若不等式(a-1)x2+2(a-1)x-4<0的解集為R,則a的取值范圍為
 
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:當(dāng)a=1時(shí),直接驗(yàn)證.當(dāng)a≠1時(shí),由于不等式(a-1)x2+2(a-1)x-4<0的解集為R,可得
a-1<0
△=4(a-1)2+16(a-1)<0
,解出即可.
解答: 解:當(dāng)a=1時(shí),不等式化為-4<0,滿足條件,因此a=1符號(hào)題意.
當(dāng)a≠1時(shí),∵不等式(a-1)x2+2(a-1)x-4<0的解集為R,∴
a-1<0
△=4(a-1)2+16(a-1)<0
,
解得-3<a<1.
綜上可得:a的取值范圍為(-3,1].
故答案為:(-3,1].
點(diǎn)評(píng):本題考查了一元二次不等式的解法、分類討論的思想方法,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=cosβ,-
π
2
<α<
π
2
,0<β<π.則α+β的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,已知∠ABC=90°,AB=a,BC=b,BB1=c,M、N分別是B1C1和AC的中點(diǎn),求直線MN與底面ABC的夾角的正弦值(或余弦值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司準(zhǔn)備將1000萬元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個(gè)建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤(rùn)ξ1(萬元)的概率P分布列如表所示:
ξ1  110 120170 
 0.4
且ξ1的期望E(ξ1)=120;若投資乙項(xiàng)目一年后可獲得的利潤(rùn)ξ2(萬元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價(jià)格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為p(0<p<1)和1-p,乙項(xiàng)目產(chǎn)品價(jià)格一年內(nèi)調(diào)整次數(shù)X(次)與ξ2的關(guān)系如表所示:
X(次)  0
 ξ2 41.2 117.6204.0 
(1)求m,n的值;
(2)求ξ1的分布列;
(3)若E(ξ1)<E(ξ2)則選擇投資乙項(xiàng)目,求此時(shí)P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠購(gòu)買了某種設(shè)備,該設(shè)備正常使用使用n年的使用成本,含購(gòu)設(shè)備在費(fèi)維修費(fèi)保養(yǎng)費(fèi)以及使用設(shè)備所需的電費(fèi)油費(fèi)等費(fèi)用的總費(fèi)用為f(n)=
1
10
n2+12n+10(n∈N*,1≤n≤20),則年平均使用成本即
f(n)
n
最低為( 。
A、8B、14C、12D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=
2
cosx的圖象,需將函數(shù)y=
2
sin(2x+
π
4
)的圖象如何移動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD,AB=a,BC=b,且∠C=120°,求BD之長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx+
3
cosx).
(1)求函數(shù)f(x)的值域最小正周期;
(2)若隨任意函數(shù)x∈[0,
π
6
],則|f(x)-
3
|+2>m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩平行直線3x-2y-1=0和3x-2y+c=0之間的距離為
2
13
13
,則c=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案