要得到函數(shù)y=
2
cosx的圖象,需將函數(shù)y=
2
sin(2x+
π
4
)的圖象如何移動?
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:先根據(jù)左加右減的原則機(jī)型左右平移,再根據(jù)w變?yōu)樵瓉淼?span id="2hlhnr3" class="MathJye">
1
2
倍時橫坐標(biāo)變?yōu)樵瓉淼?倍進(jìn)行變換.
解答: 解:將函數(shù)y=
2
sin(2x+
π
4
)的圖象沿x軸向右平移
π
8
個長度單位可得函數(shù)y=
2
sin[2(x-
π
8
)+
π
4
]=
2
sin2x的圖象,縱坐標(biāo)不變橫坐標(biāo)擴(kuò)大為原來的2倍得到y(tǒng)=
2
cosx的圖象.
點(diǎn)評:本題主要考查三角函數(shù)的平移變換,高考對于三角函數(shù)的考查以基礎(chǔ)為主,故要強(qiáng)化基礎(chǔ)知識的夯實(shí),屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,3,4中選取3個不同的數(shù)作一元二次方程ax2+bx+c=0的系數(shù),得出
 
個不同解的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

⊙C的圓心C坐標(biāo)為(x0,x0),且過定點(diǎn)P(4,2).
(1)求⊙C的方程;
(2)當(dāng)x0為何值時,⊙C的面積最?并求出此時圓的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形OACB中,BD=
1
3
BC,OD與BA交于點(diǎn)E,用向量方法證明:BE=
1
4
BA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式(a-1)x2+2(a-1)x-4<0的解集為R,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镽,若f(x+1)為偶函數(shù),且x∈[1,+∞)時,f(x)=e(1-x),則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)的最小值為-1,且f(-2)=f(0)=0
(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)F(x)=tf(x)-x-3其中t≥0,求函數(shù)F(x)在x∈[-
3
2
,2]時的最大值H(t);
(3)若g(x)=f(x)+k(k為實(shí)數(shù)),對任意m∈[0,+∞)使得g(m)=H(m)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用計算機(jī)產(chǎn)生0~3之間均勻隨機(jī)數(shù)a,則事件函數(shù)f(x)=loga(x2-2x+2)在(1,+∞)上單調(diào)遞增的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,若a2+b2=2015c2,則
tanA•tanB
tanC(tanA+tanB)
的值為( 。
A、1007
B、
2015
2
C、2014
D、2015

查看答案和解析>>

同步練習(xí)冊答案