已知函數(shù)f(x)=x-aln x(a∈R).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-3x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求函數(shù)f(x)在區(qū)間[-3,2]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=且g(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若,為整數(shù),且當(dāng)時(shí),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a∈R,函數(shù)f(x)=+ln x-1.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求f(x)在區(qū)間(0,e]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)在上為增函數(shù)(為常數(shù)),則稱為區(qū)間上的“一階比增函數(shù)”,為的一階比增區(qū)間.
(1) 若是上的“一階比增函數(shù)”,求實(shí)數(shù)的取值范圍;
(2) 若 (,為常數(shù)),且有唯一的零點(diǎn),求的“一階比增區(qū)間”;
(3)若是上的“一階比增函數(shù)”,求證:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三次函數(shù),為實(shí)常數(shù)。
(1)若時(shí),求函數(shù)的極大、極小值;
(2)設(shè)函數(shù),其中是的導(dǎo)函數(shù),若的導(dǎo)函數(shù)為,,與軸有且僅有一個(gè)公共點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有解,求實(shí)數(shù)m的取值范圍;
(3)若存在實(shí)數(shù),使成立,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com