.(14分)已知函數(shù),,其中

(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值

(Ⅱ)若對(duì)任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍

 

【答案】

(Ⅰ)∵,其定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052223302557815985/SYS201205222333418125716986_DA.files/image002.png">,      ∴.…1分

是函數(shù)的極值點(diǎn),     ∴,即,∵,∴.………3分

(Ⅱ)對(duì)任意的都有成立等價(jià)于對(duì)任意的

都有……………………4分

當(dāng)時(shí),.∴函數(shù)上是增函數(shù).

.………………………6分

,且,………………………7分

①當(dāng)時(shí),,

∴函數(shù)上是增函數(shù). ∴

.由,得,     又,∴不合題意.…………………9分

②當(dāng)1≤時(shí),  若1≤,則

,則

∴函數(shù)上是減函數(shù),在上是增函數(shù).

.   由,得,又1≤,∴.……11分

③當(dāng)時(shí),

∴函數(shù)上是減函數(shù).∴.   由,得

,∴. ………………13分   綜上所述,的取值范圍為 ………………14分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=·,其中=(sinωx+cosωx,cosωx), =(cosωx-sinωx,2sinωx)(ω>0).若f(x)相鄰兩對(duì)稱(chēng)軸間的距離不小于.

(1)求ω的取值范圍;

(2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,a=,b+c=3(b>c),當(dāng)ω最大時(shí),f(A)=1,求邊b,c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省五校聯(lián)盟高三下學(xué)期第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,函數(shù),,(其中e是自然對(duì)數(shù)的底數(shù),為常數(shù)),

(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;

(2)是否存在實(shí)數(shù),使得的最小值為3. 若存在,求出的值,若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分14分)

已知函數(shù).(其中為自然對(duì)數(shù)的底數(shù)),

(Ⅰ)設(shè)曲線(xiàn)處的切線(xiàn)與直線(xiàn)垂直,求的值;

(Ⅱ)若對(duì)于任意實(shí)數(shù)≥0,恒成立,試確定實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線(xiàn)C:在點(diǎn)

處的切線(xiàn)與軸垂直?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高一期末考試數(shù)學(xué)試卷 題型:解答題

已知函數(shù),(其中)的周期為π,且圖象上一個(gè)最低點(diǎn)為。

 (1)求的解析式;

(2)當(dāng)時(shí),求的最值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案