.(14分)已知函數(shù),,其中
(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值
(Ⅱ)若對(duì)任意的(為自然對(duì)數(shù)的底數(shù))都有≥成立,求實(shí)數(shù)的取值范圍
(Ⅰ)∵,其定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052223302557815985/SYS201205222333418125716986_DA.files/image002.png">, ∴.…1分
∵是函數(shù)的極值點(diǎn), ∴,即,∵,∴.………3分
(Ⅱ)對(duì)任意的都有≥成立等價(jià)于對(duì)任意的
都有≥……………………4分
當(dāng)時(shí),.∴函數(shù)在上是增函數(shù).
∴.………………………6分
∵,且,,………………………7分
①當(dāng)且時(shí),,
∴函數(shù)在上是增函數(shù). ∴
.由≥,得≥, 又,∴不合題意.…………………9分
②當(dāng)1≤≤時(shí), 若1≤,則
若≤,則
∴函數(shù)在上是減函數(shù),在上是增函數(shù).
∴. 由≥,得≥,又1≤≤,∴≤≤.……11分
③當(dāng)且時(shí),
∴函數(shù)在上是減函數(shù).∴. 由≥,得≥
又,∴. ………………13分 綜上所述,的取值范圍為 ………………14分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求ω的取值范圍;
(2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,a=,b+c=3(b>c),當(dāng)ω最大時(shí),f(A)=1,求邊b,c的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省五校聯(lián)盟高三下學(xué)期第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,函數(shù),,(其中e是自然對(duì)數(shù)的底數(shù),為常數(shù)),
(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù),使得的最小值為3. 若存在,求出的值,若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù),.(其中為自然對(duì)數(shù)的底數(shù)),
(Ⅰ)設(shè)曲線(xiàn)在處的切線(xiàn)與直線(xiàn)垂直,求的值;
(Ⅱ)若對(duì)于任意實(shí)數(shù)≥0,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線(xiàn)C:在點(diǎn)
處的切線(xiàn)與軸垂直?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高一期末考試數(shù)學(xué)試卷 題型:解答題
已知函數(shù),(其中)的周期為π,且圖象上一個(gè)最低點(diǎn)為。
(1)求的解析式;
(2)當(dāng)時(shí),求的最值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com