如圖,ABCD是邊長為2a的正方形,M,N分別是AB,AD的中點,CP⊥平面ABCD,PC= a.(1)求證:BD∥平面PMN;(2)求點B到平面PMN的距離.

答案:
解析:

  解 (1)∵M(jìn),N分別是正方形ABCD的邊AB,AD的中點,∴BD∥MN,MN平面PMN.∴BD∥平面PMN.

  (2)∵ABCD是正方形,∴BD⊥AC,MN∥BD,∴MN⊥AC,又PC⊥平面ABCD,∴MN⊥PC,于是MN⊥平面PCE(E是MN與AC的交點).作OH⊥PE于H(O是AC,BD的交點),則OH⊥MN.∴OH⊥平面PMN.由BD∥平面PMN可知,OH的長等于點B到平面PMN的距離,在Rt△PCE中,PC= a,EC=a.∴PE=a,EO=a,由△EHO∽△ECP得,OH=a.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)設(shè)點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長為a的菱形,且∠BAD=60°,△PAD為正三角形,且面PAD⊥面ABCD.
(1)求cos<
AB
PD
>的值;
(2)若E為AB的中點,F(xiàn)為PD的中點,求|
EF
|的值;
(3)求二面角P-BC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是邊長為2的正方形,面EAD⊥面ABCD,且EA=ED,EF∥AB,且EF=1,O是線段AD的中點,三棱錐F-OBC的體積為
23
,
(1)求證:OF⊥面FBC;
(2)求二面角B-OF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寧城縣模擬)如圖,ABCD是邊長為1的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求點F到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是邊長為2的正方形紙片,沿某動直線l為折痕將正方形在其下方的部分向上翻折,使得每次翻折后點B都落在邊AD上,記為B';折痕與AB交于點E,以EB和EB’為鄰邊作平行四邊形EB’MB.若以B為原點,BC所在直線為x軸建立直角坐標(biāo)系(如下圖):
(Ⅰ).求點M的軌跡方程;
(Ⅱ).若曲線S是由點M的軌跡及其關(guān)于邊AB對稱的曲線組成的,等腰梯形A1B1C1D1的三邊A1B1,B1C1,C1D1分別與曲線S切于點P,Q,R.求梯形A1B1C1D1面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案