【題目】已知函數(shù)在點處切線的斜率為1.

(1)求的值;

(2)設,若對任意,都有,求實數(shù)的取值范圍.

【答案】(1)-1;(2).

【解析】

(1)由題意,求得函數(shù)的導數(shù),由,即,即可求解的值.

(2)由對任意,都有,轉化為對任意,都有,設,利用導數(shù)求得函數(shù)上單調性,可得,設,利用導數(shù)求得函數(shù)的單調性與最值,進而可得到答案.

(1)由題意得,,

由于,所以,即.

(2)由題意得,當時,,則有.

下面證當時,對任意,都有.

由于時,,當時,則有.

只需證明對任意,都有.

證明:設,則,所以上單調遞增;

所以當時,,即,

所以,則.

,,則.

,,則.

由于當時,;當時,;

則當時,.

時,,所以當時,則,所以上單調遞增.

時,則,即,所以上單調遞增.

時,則.

所以對任意,都有.

所以,當時,對任意,都有.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為,經過點的直線與橢圓相交于兩點,點為線段的中點,點為坐標原點.當直線的斜率為時,直線的斜率為.

1)求橢圓的標準方程;

2)若點為橢圓的左頂點,點為橢圓的右頂點,過的動直線交該橢圓于,兩點,記的面積為,的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮數(shù)列,,滿足:對任意的,都有=,=,=.記=(表示個實數(shù),,中的最大值).

(1)若=,=,=,求,,的值;

(2)若=,=,求滿足=的所有值;

(3)設,,是非零整數(shù),且,,互不相等,證明:存在正整數(shù),使得數(shù)列,,中有且只有一個數(shù)列自第項起各項均為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是雙曲線上的兩點,線段的中點為,直線不經過坐標原點

1)若直線和直線的斜率都存在且分別為,求證:

2)若雙曲線的焦點分別為、,點的坐標為,直線的斜率為,求由四點、所圍成四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

Ⅰ)由題意可求得,則,橢圓的方程為.

Ⅱ)設,

當直線的斜率不存在或直線的斜率不存在時,.

當直線、的斜率存在時,,設直線的方程為,聯(lián)立直線方程與橢圓方程,結合韋達定理計算可得直線的斜率為,直線的斜率為.綜上可得:直線的斜率之積為定值.

Ⅰ)設由題

解得,則橢圓的方程為.

Ⅱ)設,,當直線的斜率不存在時,

,則,直線的方程為代入,

可得 ,則,

直線的斜率為,直線的斜率為,

當直線的斜率不存在時,同理可得.

當直線、的斜率存在時,設直線的方程為,

則由消去可得:

,則,代入上述方程可得:

,,

,

設直線的方程為,同理可得

直線的斜率為

直線的斜率為, .

所以,直線的斜率之積為定值,即.

【點睛】

(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(y)建立一元二次方程,然后借助根與系數(shù)的關系,并結合題設條件建立有關參變量的等量關系.

(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.

型】解答
束】
21

【題目】已知函數(shù)f(x)=(x+b)(-a),(b>0),在(-1,f(-1))處的切線方程為(e-1)x+ey+e-1=0.

(Ⅰ)求a,b;

(Ⅱ)若方程f(x)=m有兩個實數(shù)根x1,x2,且x1<x2,證明:x2-x1≤1+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分13分如圖在直角坐標系,的頂點是原點,始邊與軸正半軸重合終邊交單位圓于點,,將角的終邊按逆時針方向旋轉,交單位圓于點

1,

2分別過軸的垂線,垂足依次為,的面積為,的面積為,求角的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù),當時,

則函數(shù)的所有零點之和為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C1的極坐標方程為ρ4cosθ,直線C2的參數(shù)方程為t為參數(shù)).

1)求曲線C1的直角坐標方程和直線C2的普通方程;

2)若P1,0),直線C2與曲線C1相交于A,B兩點,求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時間n1≤n≤30nN*)的函數(shù)關系如下圖所示,其中函數(shù)f(n) 圖象中的點位于斜率為 5 和-3 的兩條直線上,兩直線交點的橫坐標為m,且第m天日銷售量最大.

(Ⅰ)f(n) 的表達式,及前m天的銷售總數(shù);

(Ⅱ)按以往經驗,當該專賣店銷售某款服裝的總數(shù)超過 400 件時,市面上會流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時,該款服裝將不再流行.試預測本款服裝在市面上流行的天數(shù)是否會超過 10 天?請說明理由.

查看答案和解析>>

同步練習冊答案