17.設(shè)集合A={-1,0,1,2},B={x|x-1<0},則A∩B=( 。
A.(-1,1)B.(-1,0)C.{-1,0,1}D.{-1,0}

分析 求解一元一次不等式化簡B,再由交集運(yùn)算得答案.

解答 解:∵B={x|x-1<0}=(-∞,1),A={-1,0,1,2},
∴A∩B={-1,0},
故選:D.

點(diǎn)評 本題考查交集及其運(yùn)算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知兩曲線f(x)=2sinx,g(x)=acosx,$x∈(0\;,\;\;\frac{π}{2})$相交于點(diǎn)P.若兩曲線在點(diǎn)P處的切線互相垂直,則實(shí)數(shù)a的值為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0,f(x0)),記函數(shù)f(x)的導(dǎo)函數(shù)為g(x),則有g(shù)'(x0)=0.若函數(shù)f(x)=x3-3x2,則$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$=-8066.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的單調(diào)函數(shù),且對任意的x,y∈R都有f(x+y)=f(x)+f(y),若動點(diǎn)P(x,y)滿足等式f(x2+2x+2)+f(y2+8y+3)=0,則x+y的最大值為( 。
A.2$\sqrt{6}$-5B.-5C.2$\sqrt{6}$+5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知y=f(x+1)+2是定義域?yàn)镽的奇函數(shù),則f(e)+f(2-e)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=cos(ωx+\frac{π}{6})(ω>0)$的最小正周期是π,則其圖象向右平移$\frac{π}{3}$個單位后的單調(diào)遞減區(qū)間是(  )
A.$[{-\frac{π}{4}+kπ,\frac{π}{4}+kπ}](k∈Z)$B.$[{\frac{π}{4}+kπ,\frac{3π}{4}+kπ}](k∈Z)$
C.$[{\frac{π}{12}+kπ,\frac{7π}{12}+kπ}](k∈Z)$D.$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知{an}是等比數(shù)列,a3=1,a7=9,則a5=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知Sn為數(shù)列{an}的前n項和,$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$且a1=2.則{an}的通項公式為an=n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人 來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為$\frac{5}{8}$.

查看答案和解析>>

同步練習(xí)冊答案