【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對,,求實數(shù)的取值范圍.

【答案】(1)見解析(2)

【解析】

1)先求得函數(shù)的定義域,然后對函數(shù)求導,對分成四種情況,討論函數(shù)的單調(diào)性.2)根據(jù)(1)中所求函數(shù)的單調(diào)區(qū)間,對四種情況分別研究函數(shù)的函數(shù)值,結(jié)合來求得的取值范圍.

解:(1)由題意知,的定義域為

,

.

①當時,令,可得,,得,故函數(shù)的增區(qū)間為,減區(qū)間為

②當時,,令,可得,,得,故的增區(qū)間為,減區(qū)間為、;

③當時,,故函數(shù)的減區(qū)間為;

④當時,,令,可得,,得,或,故的增區(qū)間為,減區(qū)間為,.

綜上所述:當時,上為減函數(shù),在上為增函數(shù);當時,,上為減函數(shù),在上為增函數(shù);當時,為減函數(shù);當時,,上為減函數(shù),在上為增函數(shù).

(2)由(1)可知:

①當時,,此時;

②當時,,當時,有,可得,不符合題意;

③當時,,由函數(shù)的單調(diào)性可知,當,不符合題意;

④當時,,由函數(shù)的單調(diào)性可知,當,不符合題意.

綜上可知,所求實數(shù)的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠預購軟件服務,有如下兩種方案:

方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;

方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.

(1)設日收費為元,每天軟件服務的次數(shù)為,試寫出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠對過去100天的軟件服務的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點GAB的中點,AB=BE=2.

)求證:EG∥平面ADF

)求二面角OEFC的正弦值;

)設H為線段AF上的點,且AH=HF,求直線BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務,要求是:任務必須排在前三項執(zhí)行,且執(zhí)行任務之后需立即執(zhí)行任務,任務、相鄰,則不同的執(zhí)行方案共有______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)購買某種儀器,在儀器使用期間可能出現(xiàn)故障,需要請銷售儀器的企業(yè)派工程師進行維修,因為考慮到人力、成本等多方面的原因,銷售儀器的企業(yè)提供以下購買儀器維修服務的條件:在購買儀器時,可以直接購買儀器維修服務,維修一次1000元;在儀器使用期間,如果維修服務次數(shù)不夠再次購買,則需要每次1500元..現(xiàn)需決策在購買儀器的同時購買幾次儀器維修服務,為此搜集并整理了500臺這種機器在使用期內(nèi)需要維修的次數(shù),得到如下表格:

維修次數(shù)

5

6

7

8

9

頻數(shù)(臺)

50

100

150

100

100

表示一臺儀器使用期內(nèi)維修的次數(shù),表示一臺儀器使用期內(nèi)維修所需要的費用,表示購買儀器的同時購買的維修服務的次數(shù).

(1)若,求的函數(shù)關(guān)系式;

(2)以這500臺儀器使用期內(nèi)維修次數(shù)的頻率代替一臺儀器維修次數(shù)發(fā)生的概率,求的概率.

(3)假設購買這500臺儀器的同時每臺都購買7次維修服務,或每臺都購買8次維修服務,請分別計算這500臺儀器在購買維修服務所需要費用的平均數(shù),以此為決策依據(jù),判斷購買7次還是8次維修服務?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,點F為拋物線的焦點,焦點F到直線3x-4y+3=0的距離為d1,焦點F到拋物線C的準線的距離為d2,且。

(1)拋物線C的標準方程;

(2)若在x軸上存在點M,過點M的直線l分別與拋物線C相交于P、Q兩點,且為定值,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的上頂點為A,左、右焦點分別為,直線的斜率為,點在橢圓E上,其中P是橢圓上一動點,Q點坐標為.

(1)求橢圓E的標準方程;

(2)作直線lx軸垂直,交橢圓于兩點(兩點均不與P點重合),直線,x軸分別交于點.的最小值及取得最小值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

討論的單調(diào)性;

,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案