3.已知復(fù)數(shù)z1=-$\sqrt{5}$i,z2=6-6i.
(1)分別將z1、z2化為極坐標(biāo)形式;
(2)計(jì)算:$\frac{{z}_{1}}{{z}_{2}}$.

分析 (1)根據(jù)極坐標(biāo)的定義求出z1、z2的極坐標(biāo)即可;(2)根據(jù)復(fù)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)復(fù)數(shù)z1=-$\sqrt{5}$i,模是$\sqrt{5}$,z2=6-6i,模是6$\sqrt{2}$,
∴z1的極坐標(biāo)是($\sqrt{5}$,2kπ+$\frac{3π}{2}$),
z2的極坐標(biāo)是(6$\sqrt{2}$,2kπ+$\frac{7π}{4}$);
(2)$\frac{{z}_{1}}{{z}_{2}}$=$\frac{-\sqrt{5}i}{6-6i}$=$\frac{-(\sqrt{5}i)(6+6i)}{(6-6i)(6+6i)}$=$\frac{\sqrt{5}}{12}$-$\frac{\sqrt{5}}{12}$i.

點(diǎn)評(píng) 本題考查了極坐標(biāo)問(wèn)題,考查復(fù)數(shù)的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.使f(x)=sin(2x+θ)-$\sqrt{3}$cos(2x+θ)為奇函數(shù),且在[0,$\frac{π}{4}$]上是減函數(shù)的θ的一個(gè)值是(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知sinθ=-$\frac{5}{13}$,且2kπ+$\frac{3π}{2}$<θ<2kπ+2π,則cosθ=$\frac{12}{13}$,tanθ=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.A,B,C是△ABC的三個(gè)內(nèi)角,若$\overrightarrow{m}$=(sin2$\frac{B+C}{2}$,1),$\overrightarrow{n}$=(-2,cos2A+1),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,則cosA=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$或1D.$\frac{1}{2}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,∠C=90°,BC=2,M為BC的中點(diǎn),sin∠BAM=$\frac{1}{3}$,則AC的長(zhǎng)為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=sin({2x+\frac{π}{3}})-cos({2x+\frac{π}{6}})-\sqrt{3}$cos2x,x∈R.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,B為銳角且f(B)=$\sqrt{3},AC=\sqrt{3}$,△ABC周長(zhǎng)為3$\sqrt{3}$,求AB,AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意n∈N*,都有${S_n}={(-1)^n}{a_n}+\frac{1}{2^n}+n-3$,則數(shù)列{a2n-1}的前n項(xiàng)和為$\frac{1}{{2}^{n-2}}$-$\frac{1}{{4}^{n}}$-3+2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.小明、小王、小張、小李4名同學(xué)排成一縱隊(duì)表演節(jié)目,其中小明不站排頭,小張不站排尾,則不同的排法共有( 。┓N.
A.14B.18C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=|lnx|-$\frac{1}{8}$x2的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案