如圖,為了測量河對岸A、B兩點之間的距離,在岸邊選定了1km長的基線CD,并測得∠ACD=90°,∠BCD=60°,∠BDC=75°,∠ADC=30°.試計算A、B之間的距離.
精英家教網(wǎng)
分析:先根據(jù),∠ACD=90°,∠ADC=30°判斷出△ACD為直角三角形,進而求得AC,進而在△BCD中,由正弦定理可求得BC,最后在△ABC中,利用余弦定理即可求得AB.
解答:解:在△ACD中,已知CD=a,∠ACD=90°,∠ADC=30°,所以AC=
3
3
.①
在△BCD中,由正弦定理可得BC=
3
3
sin75°
sin45°
=
3
+3
3
.②
在△ABC中,已經(jīng)求得AC和BC,又因為∠ACB=30°,
所以利用余弦定理可以求得A、B兩點之間的距離為AB=
AC2+BC2-2AC•BC•cos30°
=
2
2
點評:本題主要考查了解三角形的實際應(yīng)用.注意靈活利用正弦定理和余弦定理及其變形公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,為了測量河對岸的塔高AB,可以選與塔底B在同一水平面內(nèi)的兩個測量點C與D.現(xiàn)測得∠BCD=53°,∠BDC=60°,CD=60(米),并在點C測得塔頂A的仰角為∠ACB=29°,求塔高AB(精確到0.1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為了測量河對岸A,B兩點間的距離,在河的這邊測得CD=
3
2
 km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,A、B兩點間的距離為
6
4
km
6
4
km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為了測量河對岸A,B兩點間的距離,某課外小組的同學(xué)在岸邊選取C,D兩點,測得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,則A,B兩點間的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省唐山市高三第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,為了測量河對岸A、B兩點之間的距離,觀察者找到一個點C,從C點可以觀察到點A、B;找到一個點D,從D點可以觀察到點A、C:找到一個點E,從E點可以觀察到點B、C。并測得以下數(shù)據(jù):CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B兩 點之間的距離。

 

查看答案和解析>>

同步練習(xí)冊答案