分析 (1)設(shè)P(x0,4),通過(guò)|PF|=4,結(jié)合拋物線(xiàn)的定義,解得p=4,從而拋物線(xiàn)的方程.
(2)設(shè)直線(xiàn)l的方程為x=ty+m,代入y2=8x利用韋達(dá)定理以及三角形的重心坐標(biāo),求出t,m即可求直線(xiàn)方程.
解答 解:(1)設(shè)P(x0,4),因?yàn)閨PF|=4,由拋物線(xiàn)的定義得${x_0}+\frac{p}{2}=4$,又42=2px0,
因此$\frac{8}{p}+\frac{p}{2}=4$,解得p=4,從而拋物線(xiàn)的方程為y2=8x.
(2)設(shè)直線(xiàn)l的方程為x=ty+m,代入y2=8x得y2-8ty-8m=0,△OAB的重心為 $(\frac{4}{3},\frac{4}{3})$,
由$\left\{\begin{array}{l}{x_1}+{x_2}=t({y_1}+{y_2})+2m=4\\{y_1}+{y_2}=8t=4\end{array}\right.⇒t=\frac{1}{2},m=1$,∴$x=\frac{1}{2}y+1$
即所求直線(xiàn)方程為:2x-y-2=0.
點(diǎn)評(píng) 本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系的綜合應(yīng)用,拋物線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 180種 | B. | 120種 | C. | 90種 | D. | 80種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 600 | B. | 400 | C. | 300 | D. | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)的最小正周期為$\frac{π}{2}$ | B. | f(x-$\frac{π}{6}$)是奇函數(shù) | ||
C. | f(x)的一個(gè)對(duì)稱(chēng)中心為($\frac{π}{6}$,0) | D. | f(x)的一條對(duì)稱(chēng)軸為x=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a5>0,則a2017<0 | B. | 若a6>0,則a2018<0 | ||
C. | 若a5>0,則S2017>0 | D. | 若a6>0,則S2018>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {x|x≤-2} | C. | {x|x<3} | D. | {x|-2≤x<3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com