養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12M,高4M。養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,F(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4M(高不變);二是高度增加4M(底面直徑不變)。
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經(jīng)濟(jì)些,說明理由.

解:(1)如果按方案一,倉庫的底面直徑變成16M,則倉庫的體積

如果按方案二,倉庫的高變成8M,則倉庫的體積

(2)如果按方案一,倉庫的底面直徑變成16M,半徑為8M.
棱錐的母線長為
則倉庫的表面積
如果按方案二,倉庫的高變成8M.
棱錐的母線長為
則倉庫的表面積
(3)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.

(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E—PC—A的正弦值.(本題滿分14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的長方體中,底面是邊長為的正方形,的交點,是線段的中點.

(1)求證:平面;
(2)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

、如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由.
   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

( 14分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到點,且在平面BCD上的射影O恰好在CD上.
(Ⅰ)求證:;
(Ⅱ)求證:平面平面
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖所示,為了制作一個圓柱形燈籠,先要制作4個全等的矩形骨架,
總計耗用9.6米鐵絲,再用平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面)。
(Ⅰ)當(dāng)圓柱底面半徑取何值時,取得最大值?并求出該最大值(結(jié)果精確到0.01平方米);
(Ⅱ)若要制作一個如圖放置的,底面半徑為0.3米的燈籠,請作出用于燈籠的三視圖(作圖時,不需考慮骨架等因素)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,在平面內(nèi),ABCD的菱形,都是正方形。將兩個正方形分別沿AD,CD折起,使重合于點D1。設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè),設(shè)(圖2)。

(1)設(shè)二面角E – AC – D1的大小為q,若,求的取值范圍;
(2)在線段上是否存在點,使平面平面,若存在,求出所成的比;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,D,E分別為三棱錐P—ABC的棱AP、AB上的點,且AD:DP=AE:EB=1:3.求證:DE//平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖6所示,等腰三角形△ABC的底邊AB=,高CD=3.點E是線段BD上異于B、D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
記BE=x,V(x)表示四棱錐P-ACFE的體積。
(1)求V(x)的表達(dá)式;
(2)當(dāng)x為何值時,V(x)取得最大值?
(3)當(dāng)V(x)取得最大值時,求異面直線
AC與PF所成角的余弦值。

查看答案和解析>>

同步練習(xí)冊答案