A. | [$\frac{9}{11}$,$\frac{5}{3}$] | B. | [-5,$\frac{5}{3}$] | C. | [-5,$\frac{9}{11}$] | D. | [-3,$\frac{1}{3}$] |
分析 求出雙曲線的漸近線方程,可得平移后的方程,分別作出直線y=±2(x+1),直線y=x+3,可得三角形的區(qū)域,化簡(jiǎn)z=1+2$•\frac{y-1}{x-2}$,$\frac{y-1}{x-2}$表示點(diǎn)(x,y)與P(2,1)的斜率,求出交點(diǎn)A,B,C,以及直線PA,PB,PC的斜率,由圖象即可得到所求最值,進(jìn)而得到所求范圍.
解答 解:雙曲線x2-$\frac{{y}^{2}}{4}$=1的漸近線方程為y=±2x,
向左平移2個(gè)單位,可得y=±2(x+1),
作出直線y=±2(x+1),直線y=x+3,可得三角形的區(qū)域,如右圖.
z=$\frac{x+2y-4}{x-2}$=$\frac{(x-2)+2(y-1)}{x-2}$=1+2$•\frac{y-1}{x-2}$,
$\frac{y-1}{x-2}$表示點(diǎn)(x,y)與P(2,1)的斜率,
由$\left\{\begin{array}{l}{y=x+3}\\{y=2x+2}\end{array}\right.$解得A(1,4),由$\left\{\begin{array}{l}{y=x+3}\\{y=-2x-2}\end{array}\right.$可得B(-$\frac{5}{3}$,$\frac{4}{3}$),
由$\left\{\begin{array}{l}{y=2x+2}\\{y=-2x-2}\end{array}\right.$可得C(-1,0),
由kPC=$\frac{1-0}{2+1}$=$\frac{1}{3}$,kPB=$\frac{1-\frac{4}{3}}{2+\frac{5}{3}}$=-$\frac{1}{11}$,kPA=$\frac{1-4}{2-1}$=-3.
可得$\frac{y-1}{x-2}$的最小值為-3,最大值為$\frac{1}{3}$,
可得z的最小值為-5,最大值為$\frac{5}{3}$.
故選:B.
點(diǎn)評(píng) 本題考查給定平面區(qū)域的最值的求法,注意運(yùn)用兩點(diǎn)的斜率公式,運(yùn)用數(shù)形結(jié)合的思想方法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2015 | B. | 2014 | C. | 4029 | D. | 4028 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=log2x | B. | y=x-1 | C. | y=x3 | D. | y=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x0∈R,x02-x0>0”的否定是“?x0∈R,x02-x0<0” | |
B. | 已知x∈R,則“x>1”是“x>2”的充分不必要條件 | |
C. | 在回歸直線$\widehat{y}$=-0.5x+3中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量$\widehat{y}$平均減少0.5個(gè)單位 | |
D. | 若a,b∈[0,2],則不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{π}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com