(本題滿分16分)如圖,在四棱錐中,底面且邊長為的菱形,側(cè)面是等邊三角形,且平面垂直于底面
(1)若的中點(diǎn),求證:平面;
(2)求證:
(3)求二面角的大。
(1)證明見解析。
(2)證明見解析。
(3)
(1)為等邊三角形且的中點(diǎn),
又平面平面,平面
(2)是等邊三角形且的中點(diǎn),
,,平面,
平面
(3)由,,
,,
為二面角的平面角
中,,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐P-ABC中,,,點(diǎn) 分別是AC、PC的中點(diǎn),底面AB
(1)求證:平面;
(2)當(dāng)時,求直線與平面所成的角的大;
(3)當(dāng)取何值時,在平面內(nèi)的射影恰好為的重心?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓柱內(nèi)有一個三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑。

(Ⅰ)證明:平面平面;
(Ⅱ)設(shè)AB=,在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱內(nèi)的概率為。
(i)當(dāng)點(diǎn)C在圓周上運(yùn)動時,求的最大值;
(ii)記平面與平面所成的角為,當(dāng)取最大值時,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖5,是半徑為a的半圓,AC為直徑,點(diǎn)E為的中點(diǎn),點(diǎn)B和點(diǎn)C為線段AD的三等分點(diǎn).平面AEC外一點(diǎn)F滿足,F(xiàn)E=a .

圖5
(1)證明:EB⊥FD;
(2)已知點(diǎn)Q,R分別為線段FE,FB上的點(diǎn),使得,求平面與平面所成二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)在直角梯形中,=2,、分別是、的中點(diǎn),現(xiàn)將沿折起,使平面平面(如圖2).
(Ⅰ)求二面角的大。
(Ⅱ)在線段上確定一點(diǎn),使平面,并給出證明過程.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


如圖,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分別為AE、AB的中點(diǎn)。
(I)證明:PQ//平面ACD;
(II)求異面直線AE與BC所成角的余弦值;
(III)求平面ACD與平面ABE所成銳二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在棱長為1的正方體中,分別為棱的中點(diǎn),是側(cè)面的中心,則空間四邊形在正方體的六個面上的射影圖形面積的最大值是(。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為3,點(diǎn)上,且,點(diǎn)在平面上,且動點(diǎn)到直線的距離與到點(diǎn)的距離相等,在平面直角坐標(biāo)系中,動點(diǎn)的軌跡方程是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個正方體紙盒展開后如圖,在原正方體紙盒中有下列結(jié)論:
① ;
② 角;
③ 是異面直線;

其中正確結(jié)論的序號是___________.

查看答案和解析>>

同步練習(xí)冊答案