【題目】已知雙曲線過點且漸近線為,則下列結(jié)論錯誤的是(

A.曲線的方程為;

B.左焦點到一條漸近線距離為;

C.直線與曲線有兩個公共點;

D.過右焦點截雙曲線所得弦長為的直線只有三條;

【答案】C

【解析】

求出雙曲線的標準方程,根據(jù)方程判斷雙曲線的性質(zhì).B直接求出左焦點到漸近線的距離,C由直線方程與雙曲線方程聯(lián)立求得公共點坐標,D考慮到過焦點,因此一是求出通徑長,一是求出實軸長,與它們比較可得.

因為雙曲線的漸近線方程為,所以可設雙曲線方程為,又雙曲線過點,所以,所以雙曲線方程為A正確;

由雙曲線方程知,左焦點為,漸近線方程為,左焦點到漸近線的中庸為B正確;

,代入雙曲線方程整理得,解得,所以,直線與雙曲線只有一個公共點,C錯;

雙曲線的通徑長為,因此過右焦點,且兩頂點都右支上弦長為的弦有兩條,又兩頂點間距離為,因此端點在雙曲線左右兩支上且弦長為的弦只有一條,為實軸,所以共有3條弦的弦長為,D正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四點均在函數(shù)fx)=log2的圖象上,若四邊形ABCD為平行四邊形,則四邊形ABCD的面積是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的右焦點為,左右頂點分別為、,過點的直線(不與軸重合)交橢圓點,直線軸的交點為,與直線的交點為.

1)求橢圓的方程;

2)若,求出點的坐標;

3)求證:、三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐的側(cè)棱長都相等,底面與側(cè)面都是以為斜邊的等腰直角三角形,為線段的中點,為直線上的動點,若平面與平面所成銳二面角的平面角為,則的最大值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為上一點.

(1)求橢圓的方程;

(2)設分別關于兩坐標軸及坐標原點的對稱點,平行于的直線于異于的兩點.點關于原點的對稱點為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有如下命題:①若的展開式中含有常數(shù)項,且的最小值為;②;③若有一個不透明的袋子內(nèi)裝有大小、質(zhì)量相同的個小球,其中紅球有個,白球有個,每次取一個,取后放回,連續(xù)取三次,設隨機變量表示取出白球的次數(shù),則;④若定義在R上的函數(shù)滿足,則的最小正周期為

則正確論斷有______________.(填寫序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若函數(shù)有兩個不同的零點.

(。┣髮崝(shù)的取值范圍;

(ⅱ)求證:.(其中的極小值點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應黨的號召,堅決打贏脫貧攻堅戰(zhàn),某地區(qū)實行了幫扶單位定點幫扶扶貧村脫貧.為了解該地區(qū)貧困戶對其所提供的幫扶的滿意度,隨機調(diào)查了40個貧困戶,得到貧困戶的滿意度評分如下:

現(xiàn)按貧困戶編號從小到大的順序分組,用系統(tǒng)抽樣法從40名貧困戶中抽取容量為10的樣本.

1)若在第一分段里隨機抽到的第一個樣本的評分數(shù)據(jù)為81,記第二和第十個樣本的評分數(shù)據(jù)分別為a,b,請寫出a,b的值;

2)若10個樣本的評分數(shù)據(jù)分別為92,8486,7889,7483,7877,89.請你計算所抽到的10個樣本的平均數(shù)和方差;

3)在(1)條件下,若貧困戶的滿意度評分在之間,則滿意度等級為A”.試應用樣本估計總體的思想,用(2)中的樣本數(shù)據(jù),估計在滿意度為A的貧困戶中隨機地抽取2戶,所抽到2戶的滿意度評分均超過80”的概率.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)求出易倒伏玉米莖高的中位數(shù);

2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:

抗倒伏

易倒伏

矮莖

高莖

3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?

附:,

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案