【題目】如圖,在ABC中,B90°,ABBC2,PAB邊上一動(dòng)點(diǎn),PDBCAC于點(diǎn)D,現(xiàn)將PDA沿PD翻折至PDA1,EA1C的中點(diǎn).

1)若PAB的中點(diǎn)證明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求二面角PA1DC的正弦值.

【答案】(1)詳見解析(2)

【解析】

1)通過線線平行去得到線面平行,這也是線面平行證明中十分重要的手段.

2)利用空間向量求二面角的平面角的正弦值,向量法做題,一定要細(xì)心運(yùn)算.

1)證明:取的中點(diǎn),連接,.

因?yàn)?/span>的中點(diǎn)且,所以是△的中位線.所以PDBC,且PD.

又因?yàn)?/span>的中點(diǎn),的中點(diǎn)為,所以是△的中位線,

所以EFBC,且EF,所以PDEF平行且相等,

所以四邊形是平行四邊形,所以.

因?yàn)?/span>平面平面,所以平面.

2)解:因?yàn)?/span>平面,所以.又因?yàn)?/span>的中點(diǎn),

所以,即的中點(diǎn).可得,的中點(diǎn).

,,沿翻折至,且平面平面

利用面面垂直的性質(zhì)可得平面,以點(diǎn)為原點(diǎn)建立坐標(biāo)系如圖所示,

,,.

設(shè)平面的法向量為

,

容易得到平面的法向量,

設(shè)二面角的大小為,有

,所以

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮.某大學(xué)社團(tuán)調(diào)查了該校文學(xué)院300名學(xué)生每天誦讀詩詞的時(shí)間(所有學(xué)生誦讀時(shí)間都在兩小時(shí)內(nèi)),并按時(shí)間(單位:分鐘)將學(xué)生分成六個(gè)組:,,,,經(jīng)統(tǒng)計(jì)得到了如圖所

示的頻率分布直方圖

(Ⅰ)求頻率分布直方圖中的值,并估計(jì)該校文學(xué)院的學(xué)生每天誦讀詩詞的時(shí)間的平均數(shù);

(Ⅱ)若兩個(gè)同學(xué)誦讀詩詞的時(shí)間滿足,則這兩個(gè)同學(xué)組成一個(gè)“Team”,已知從每天誦讀時(shí)間小于20分鐘和大于或等于80分鐘的所有學(xué)生中用分層抽樣的方法抽取了5人,現(xiàn)從這5人中隨機(jī)選取2人,求選取的兩人能組成一個(gè)“Team”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有除顏色外完全相同的黑球和白球共7個(gè),其中白球3個(gè),現(xiàn)有甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時(shí)終止.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.

1)求取球2次即終止的概率;

2)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,B90°,ABBC2,PAB邊上一動(dòng)點(diǎn),PDBCAC于點(diǎn)D,現(xiàn)將PDA沿PD翻折至PDA1EA1C的中點(diǎn).

1)若PAB的中點(diǎn),證明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求四棱錐A1PBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用三種不同的顏色填涂如圖3×3方格中的9個(gè)區(qū)域,要求每行、每列的三個(gè)區(qū)域都不同色,則不同的填涂方法種數(shù)共有(  )

A.48B.24C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓

(1)過的直線截圓所得的弦長(zhǎng)為,求該直線的斜率;

(2)動(dòng)圓同時(shí)平分圓與圓的周長(zhǎng)

求動(dòng)圓圓心的軌跡方程;

問動(dòng)圓是否過定點(diǎn),若經(jīng)過,則求定點(diǎn)坐標(biāo);若不經(jīng)過,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,平面平面,△ABC為等腰三角形,的中點(diǎn),的中點(diǎn),且

(Ⅰ)證明:平面

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:相關(guān)系數(shù)用來衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱,越接近于1,相關(guān)性越弱;回歸直線過樣本點(diǎn)中心;相關(guān)指數(shù)用來刻畫回歸的效果,越小,說明模型的擬合效果越不好.兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.正確的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案