分析 由條件利用三角函數(shù)的單調(diào)性,求得各個(gè)函數(shù)的單調(diào)區(qū)間.
解答 解:(1)對(duì)于y=$\sqrt{3}$sin($\frac{2π}{5}$x-$\frac{π}{3}$),令2kπ-$\frac{π}{2}$≤$\frac{2π}{5}$x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
求得5k-$\frac{5}{12}$≤x≤5k+$\frac{25}{12}$,k∈Z,故函數(shù)的增區(qū)間為[5k-$\frac{5}{12}$,5k+$\frac{25}{12}$],k∈Z;
令2kπ+$\frac{π}{2}$≤$\frac{2π}{5}$x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得5k+$\frac{25}{12}$≤x≤5k+$\frac{55}{12}$,k∈Z,故函數(shù)的減區(qū)間為[5k+$\frac{25}{12}$,5k+$\frac{55}{12}$],k∈Z.
(2)對(duì)于y=4sin($\frac{π}{3}$-$\frac{3}{4}$x)=-4sin($\frac{3}{4}$x-$\frac{π}{3}$),令2kπ-$\frac{π}{2}$≤$\frac{3x}{4}$-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
求得$\frac{8}{3}$kπ-$\frac{2π}{9}$≤x≤$\frac{8}{3}$kπ+$\frac{5π}{9}$,k∈Z,故函數(shù)的減區(qū)間為[$\frac{8}{3}$kπ-$\frac{2π}{9}$,$\frac{8}{3}$kπ+$\frac{5π}{9}$],k∈Z;
令2kπ+$\frac{π}{2}$≤$\frac{3x}{4}$-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得$\frac{8}{3}$kπ+$\frac{5π}{9}$≤x≤$\frac{8}{3}$kπ+$\frac{22π}{9}$,k∈Z,故函數(shù)的增區(qū)間為[$\frac{8}{3}$kπ+$\frac{5π}{9}$,$\frac{8}{3}$kπ+$\frac{22π}{9}$],k∈Z.
(3)對(duì)于y=$\frac{1}{2}$cos(3x+$\frac{π}{4}$),令2kπ-π≤3x+$\frac{π}{4}$≤2kπ,
求得 $\frac{2}{3}$kπ-$\frac{5π}{12}$≤x≤$\frac{2}{3}$k-$\frac{π}{12}$,k∈Z,故函數(shù)的增區(qū)間為[$\frac{2}{3}$kπ-$\frac{5π}{12}$,$\frac{2}{3}$k-$\frac{π}{12}$],k∈Z;
令2kπ≤3x+$\frac{π}{4}$≤2kπ+π,求得$\frac{2}{3}$kπ-$\frac{π}{12}$≤x≤$\frac{2}{3}$kπ+$\frac{π}{4}$,k∈Z,故函數(shù)的減區(qū)間為[$\frac{2}{3}$kπ+$\frac{π}{12}$,$\frac{2}{3}$kπ+$\frac{π}{4}$],k∈Z.
(4)對(duì)于y=3tan($\frac{1}{2}$x-$\frac{2}{3}$π),令kπ-$\frac{π}{2}$<$\frac{1}{2}$x-$\frac{2π}{3}$<kπ+$\frac{π}{2}$,
求得2k+$\frac{π}{3}$<x<2k+$\frac{7π}{3}$,k∈Z,故函數(shù)的增區(qū)間為(2k+$\frac{π}{3}$,2k+$\frac{7π}{3}$),k∈Z.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1+ln2}{2}$ | B. | $\frac{1+2ln2}{4}$ | C. | $\frac{1-ln2}{2}$ | D. | $\frac{3-2ln2}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|1<x<2} | B. | {x|1≤x≤2} | C. | {x|1≤x<2} | D. | {x|0≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 102 | B. | 114 | C. | 126 | D. | 138 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 90 | B. | 180 | C. | 360 | D. | 405 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com