20.已知二項(xiàng)式(2+x)10按照(2+x)10=a0+a1(1-x)+a2(1-x)2+…a10(1-x)10的方式展開,則展開式中a8的值為(  )
A.90B.180C.360D.405

分析 (2+x)10=[3-(1-x)]10=a0+a1(1-x)+a2(1-x)2+…a10(1-x)10,其通項(xiàng)公式Tr+1=${∁}_{10}^{r}×{3}^{10-r}$×[-(1-x)]r,令r=8,即可得出.

解答 解:(2+x)10=[3-(1-x)]10=a0+a1(1-x)+a2(1-x)2+…a10(1-x)10,
其通項(xiàng)公式Tr+1=${∁}_{10}^{r}×{3}^{10-r}$×[-(1-x)]r
令r=8,則T9=${∁}_{10}^{8}×{3}^{2}×(1-x)^{8}$,
則展開式中a8的值為:$9×\frac{10×9}{2}$=405.
故選:D.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的單調(diào)區(qū)間:
(1)y=$\sqrt{3}$sin($\frac{2π}{5}$x-$\frac{π}{3}$);
(2)y=4sin($\frac{π}{3}$-$\frac{3}{4}$x);
(3)y=$\frac{1}{2}$cos(3x+$\frac{π}{4}$);
(4)y=3tan($\frac{1}{2}$x-$\frac{2}{3}$π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知下列數(shù)列{an}的前n項(xiàng)和Sn,求數(shù)列{an}的通項(xiàng)公式.
(1)Sn=3n-2;
(2)Sn=n2an(n≥2),a1=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,A,B,C所對(duì)的邊分別為a,b,c.已知sinC=$\frac{\sqrt{10}}{4}$.
(1)若a-b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A-sinAsinC=sin2C,求b及c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)平行四邊形的兩鄰邊所在直線的方程是x+y=0和3x-y+4=0,且對(duì)角線的交點(diǎn)是O(3,3),求另兩邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{m}$=(sinx,cosx),$\overrightarrow{n}$=(2,2-tanx),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(1)求$\frac{\sqrt{2}sin(x-\frac{π}{4})}{sinx+3cosx}$的值;
(2)設(shè)△ABC的三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且cosA=tan(x+$\frac{π}{4}$),△ABC的面積為4$\sqrt{2}$,csinB=4sinC,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)隨機(jī)變量X~N(1,σ2),若P(0<x<1)=0.3,則P(0<x<2)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(3x+ay)2(x+y)5的展開式中含有x2y5的項(xiàng)的系數(shù)為49,則實(shí)數(shù)a的值為1或-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線經(jīng)過拋物線y2=4x的焦點(diǎn)且與拋物線相交于M、N兩點(diǎn),且線段MN中點(diǎn)的橫坐標(biāo)為3,則線段MN的長(zhǎng)為( 。
A.$\sqrt{13}$B.8C.$8\sqrt{2}$D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案