【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程和曲線C的普通方程;
(2)設(shè)點(diǎn)P為曲線C上任意一點(diǎn),求點(diǎn)P到直線的距離的最大值.
【答案】(1);(2).
【解析】試題分析:(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式把直線l的極坐標(biāo)方程化為直角坐標(biāo)方程.利用同角三角函數(shù)的基本關(guān)系消去α,把曲線C的參數(shù)方程化為直角坐標(biāo)方程.
(2)設(shè)點(diǎn)P(2cosα, sinα),求得點(diǎn)P到直線l的距離,,由此求得d的最大值.
試題解析:(1)∵直線l的極坐標(biāo)方程為,即
即.
曲線C的參數(shù)方程為 (α是參數(shù)),利用同角三角函數(shù)的基本關(guān)系消去α,
可得.
(2)設(shè)點(diǎn)P(2cosα, sinα)為曲線C上任意一點(diǎn),
則點(diǎn)P到直線l的距離,
故當(dāng)cos(α+β)=1時,d取得最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù),設(shè)其導(dǎo)函數(shù)為,當(dāng)時,恒有,令,則滿足的實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知☉O1和☉O2的極坐標(biāo)方程分別是ρ=2cosθ和ρ=2asinθ(a是非零常數(shù))
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程
(2)若兩圓的圓心距為 ,求a的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 |
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學(xué)生的“讀書迷”中抽取8名進(jìn)行集訓(xùn),從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè)c=(0,1),若 + =c,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱柱的底邊長為2, 分別為的中點(diǎn).
(1)已知為線段上的點(diǎn),且,求證: 面;
(2)若二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-lnx。
(Ⅰ)當(dāng)a=時,判斷f(x)的單調(diào)性;(Ⅱ)設(shè)f(x)≤x3+4x-lnx,在定義域內(nèi)恒成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列說法: ①線性回歸分析就是由樣本點(diǎn)去尋找一條直線,使之貼近這些樣本點(diǎn)的數(shù)學(xué)方法;②利用樣本點(diǎn)的散點(diǎn)圖可以直觀判斷兩個變量的關(guān)系是否可以用線性關(guān)系表示;③通過回歸方程 ,可以估計(jì)和觀測變量的取值和變化趨勢;④因?yàn)橛扇魏我唤M觀測值都可以求得一個線性回歸方程,所以沒有必要進(jìn)行相關(guān)性檢驗(yàn).其中正確命題的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com