6.已知定義域?yàn)镽的函數(shù)f(x)滿足$f(x-1)=2f(x+1)-{log_2}\sqrt{x}$,若f(1)=2,則f(3)=$\frac{5}{4}$.

分析 由已知中定義域?yàn)镽的函數(shù)f(x)滿足$f(x-1)=2f(x+1)-{log_2}\sqrt{x}$,f(1)=2,令x=2,可得答案.

解答 解:∵定義域?yàn)镽的函數(shù)f(x)滿足$f(x-1)=2f(x+1)-{log_2}\sqrt{x}$,f(1)=2,
故x=2時(shí),$f(2-1)=2f(2+1)-lo{g}_{2}\sqrt{2}$,
即$f(1)=2f(3)-lo{g}_{2}\sqrt{2}$=2=2f(3)-$\frac{1}{2}$,
故f(3)=$\frac{5}{4}$,
故答案為:$\frac{5}{4}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是抽象及其應(yīng)用,函數(shù)求值,難度中檔

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是定義在R上的奇函數(shù),且在(0,+∞)是增函數(shù),又f(-3)=0,則不等式x•f(x)≥0的解集是( 。
A.{x|-3≤x≤3}B.{x|-3≤x<0或0<x≤3}C.{x|x≤-3或x≥3}D.{x|x≤-3或x=0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=\sqrt{1-x}+lg(1-3x)$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.(0,1]C.$(-∞,\frac{1}{3})$D.$(0,\frac{1}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={-1,0,1,2},B={y|y=2x+1,x∈A},則A∪B中元素的個(gè)數(shù)是( 。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x>0,則函數(shù)${y_1}=-{a^{-x}}$與y2=logax(a>0,且a≠1)在同一坐標(biāo)系上的部分圖象只可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式${log_{\frac{1}{3}}}(x-1)>{log_{\frac{1}{3}}}(a-x)$;
(3)求函數(shù)g(x)=|logax-1|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x),g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論正確的是( 。
A.f(x)+g(x)是奇函數(shù)B.f(x)-g(x)是偶函數(shù)C.f(x)•g(x)是奇函數(shù)D.f(x)•g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+$\frac{1}{2}$mx2-(m+1)x+1.
(1)若g(x)=f'(x),討論g(x)的單調(diào)性;
(2)若f(x)在x=1處取得極小值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{2}$=1與橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1(a>0)有相同的焦點(diǎn),則a的值為( 。
A.$\sqrt{2}$B.$\sqrt{10}$C.4D.$\sqrt{34}$

查看答案和解析>>

同步練習(xí)冊(cè)答案