若函數(shù)f(1-2x)=
1-x2
x2
(x≠0),則f(x)=
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:t=1-2x,則x=
1-t
2
代入求出f(t)的表達(dá)式,即可的到f(x)的解析式,注意x的范圍.
解答: 解:設(shè)t=1-2x,則x=
1-t
2

∵函數(shù)f(1-2x)=
1-x2
x2
=
1
x2
-1,(x≠0),
∴f(t)=
8
(1-t)2
-1
,t≠1
即f(x)=
8
(1-x)2
-1
,x≠1

故答案為:
8
(1-x)2
-1
,x≠1
點(diǎn)評(píng):本題考查了換元法求解析式,根據(jù)先前的限制條件得出所求的變量的限制條件,這是最容易錯(cuò)的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

任意給定一個(gè)正實(shí)數(shù),設(shè)計(jì)一個(gè)算法求以這個(gè)數(shù)為半徑的圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinA
1+cosA
=
1
2
,則sinA+cosA的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),記函數(shù)f(x)=
a
b
+|
b
|2
(1)求函數(shù)f(x)的周期以及f(x)的最大值和最小值;
(2)求f(x)在[0,
π
2
]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+4)2+y2=4和點(diǎn)A(-2
3
,0),圓D的圓心在y軸上移動(dòng),且恒與圓C外切,設(shè)圓D與y軸交于點(diǎn)M、N,問:∠MAN是否為定值?若為定值,求出∠MAN的弧度數(shù);若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sina+cosa=
2
,a∈(0,π),則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程2x=2-a有負(fù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(-5,3)和點(diǎn)N(-2,0)的直線的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AA1=AC,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1ACC1;
(Ⅱ)若D,E分別為A1C1和BB1的中點(diǎn),求證:DE∥平面ABC1

查看答案和解析>>

同步練習(xí)冊(cè)答案