已知A(-1,cosθ),B(sinθ,1),若|
OA
+
OB
|=|
OA
-
OB
|(O為坐標(biāo)原點),則銳角θ=
 
考點:平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:|
OA
+
OB
|=|
OA
-
OB
|(O為坐標(biāo)原點),可得:以O(shè)A,OB為鄰邊的平行四邊形為矩形,于是
OA
OB
,利用
OA
OB
=-sinθ+cosθ=0,即可得出.
解答: 解:∵|
OA
+
OB
|=|
OA
-
OB
|(O為坐標(biāo)原點),
∴以O(shè)A,OB為鄰邊的平行四邊形為矩形,
OA
OB
,
OA
OB
=-sinθ+cosθ=0,θ為銳角.
∴tanθ=1,
解得θ=
π
4

故答案為:
π
4
點評:本題考查了向量的平行四邊形法則、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2asinωxcosωx+2
3
cos2ωx-
3
(a>0,ω>0)的最大值為2,且最小正周期為π.
(I)求函數(shù)f(x)的解析式及其對稱軸方程;
(II)若f(a)=
4
3
,求sin(4α+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,|
PA
|=|
BC
|=a且
PA
=
1
2
PQ
,向
PQ
BC
的夾角θ取何值,
CP
BQ
的值最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA垂直于矩形ABCD所在的平面,PA=3,AB=2,BC=
3
,則二面角P-BD-A的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
e1
、
e2
的夾角為60°,則|2
e1
+3
e2
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnex+1,數(shù)列{an}中,
1
e
<a1≤1,an=
1
e
f(an-1)(n≥2),(其中e=2.71828…是自然對數(shù)的底數(shù)).
求證:(1)f(x)≤ex;
(2)
1
e
<an≤1;
(3)(a1-a2)a2+(a2-a3)a3+…(an-an+1)an+1
e2-1
2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,且其側(cè)視圖是一個等邊三角形,求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的首項a1=1,數(shù)列{bn}為等比數(shù)列且bn=
an+1
an
,若b10b11=2015 
1
10
,則a21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
sina-cosa+1
sina+cosa-1
=
cosa
1-sina

查看答案和解析>>

同步練習(xí)冊答案