【題目】已知橢圓的焦距為,且過點(diǎn).
(1)求橢圓的方程;
(2)若不經(jīng)過點(diǎn)的直線與交于兩點(diǎn),且直線與直線的斜率之和為,證明:直線的斜率為定值.
【答案】(1);(2)
【解析】試題分析:(1)由已知條件先求出橢圓的半焦距,再把代入橢圓方程,結(jié)合性質(zhì) ,求出 、 、,即可求出橢圓的方程;(2)設(shè)直線的方程為與橢圓的方程聯(lián)立,根據(jù)韋達(dá)定理及過兩點(diǎn)的斜率公式,利用直線的斜率之和為零可得,從而可得結(jié)果.
試題解析:(1)因?yàn)闄E圓的焦距為,且過點(diǎn),所以.因?yàn)?/span>,解得,所以橢圓的方程為.
(2)設(shè)點(diǎn),則,由消去得,(*)則,因?yàn)?/span>,即,化簡(jiǎn)得.即.(**)代入得,整理得,所以或.若,可得方程(*)的一個(gè)根為,不合題意,所以直線的斜率為定值,該值為.
【方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系和過兩點(diǎn)的斜率公式,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在軸上,還是在軸上,還是兩個(gè)坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程或 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計(jì)兩個(gè)分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.
甲 廠 | 乙 廠 | 合計(jì) | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
合計(jì) |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐S﹣ABCD中,底面ABCD是菱形,且∠BCD=60°,側(cè)面SAB是正三角形,且面SAB⊥面ABCD,F(xiàn)為SD的中點(diǎn).
(1)證明:SB∥面ACF;
(2)求面SBC與面SAD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點(diǎn)A(﹣ , ),離心率為 ,點(diǎn)F1 , F2分別為其左右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若y2=4x上存在兩個(gè)點(diǎn)M,N,橢圓上有兩個(gè)點(diǎn)P,Q滿足,M,N,F(xiàn)2三點(diǎn)共線,P,Q,F(xiàn)2三點(diǎn)共線,且PQ⊥MN.求四邊形PMQN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(﹣2,2)上的函數(shù)f(x)滿足f(﹣m)+f(1﹣m)<0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出三種函數(shù)模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根據(jù)它們?cè)鲩L(zhǎng)的快慢,則一定存在正實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),就有( )
A.f(x)>g(x)>h(x)
B.h(x)>g(x)>f(x)
C.f(x)>h(x)>g(x)
D.g(x)>f(x)>h(x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f (x)= .
(1)求函數(shù)f (x)的圖象在x= 處的切線方程;
(2)求y=f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個(gè)參賽隊(duì)伍只比賽一場(chǎng)),有高一、高二、高三共三個(gè)隊(duì)參賽,高一勝高二的概率為,高一勝高三的概率為,高二勝高三的概率為,每場(chǎng)勝負(fù)相互獨(dú)立,勝者記1分,負(fù)者記0分,規(guī)定:積分相同時(shí),高年級(jí)獲勝.
(1)若高三獲得冠軍的概率為,求;
(2)記高三的得分為,求的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com