精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1是直三棱柱,∠ACB=
π2
,若用此直三棱柱作為無(wú)蓋盛水容器,容積為10(L),高為4(dm),盛水時(shí)發(fā)現(xiàn)在D、E兩處有泄露,且D、E分別在棱AA1和CC1上,DA1=3(dm),EC1=2(dm).試問(wèn)現(xiàn)在此容器最多能盛水多少?
分析:利用體積求出底面面積,然后求出VB-ADEC的體積,再求下部體積即可.
解答:解:由三棱柱ABC-A1B1C1是直三棱柱,∠ACB=
π
2

VABC-A1B1C1=S△ABC•AA1
=
1
2
•AC•BC•4=10,得:AC•BC=5(4分)
VB-ADEC=
1
3
S△ADEC•BC
=
1
3
1
2
(AD+CE)•AC•BC=2.5(4分)
此容器最多能盛水:VABC-A1B1C1-VB-ADEC=7.5(L).(4分)
點(diǎn)評(píng):本題考查棱柱的結(jié)構(gòu)特征,考查棱柱、棱錐的體積,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分別是棱CC1,AB中點(diǎn).
(Ⅰ)求證:CN⊥平面ABB1A1;
(Ⅱ)求證:CN∥平面AMB1
(Ⅲ)求三棱錐B1-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿足
A1P
A1B1

(1)證明:PN⊥AM;
(2)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點(diǎn),點(diǎn)P在直線A1B1上,且
A1P
A1B1

(Ⅰ)證明:無(wú)論λ取何值,總有AM⊥PN;
(Ⅱ)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角取最大值時(shí)的正切值;
(Ⅲ)是否存在點(diǎn)P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點(diǎn)P的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長(zhǎng)均為2,且A1A⊥底面ABC,D為AB的中點(diǎn),G為△ABC1的重心,則|
CG
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點(diǎn).
(1)求證:BD⊥AC1
(2)若AB=
2
,AA1=2
3
,求AC1與平面ABC所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案