【題目】已知函數(shù),且函數(shù)處都取得極值.

1)求實(shí)數(shù)的值;

2)對(duì)任意,方程存在三個(gè)實(shí)數(shù)根,求實(shí)數(shù)c的取值范圍.

【答案】(1) (2)

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)和極值的關(guān)系可知, ,得到的值,然后回代函數(shù)驗(yàn)證;(2轉(zhuǎn)化為3個(gè)交點(diǎn),根據(jù)(1)的結(jié)果計(jì)算極大值和極小值,以及端點(diǎn)值,比較后得到函數(shù)的圖象,如果有3個(gè)不同交點(diǎn)時(shí), ,得到的值.

試題解析:解:(1)f'(x)=3x2+2ax+b

由題意可知

解得

經(jīng)檢驗(yàn),適合條件,所以

(2)原題等價(jià)于函數(shù)與y=f(x)與函數(shù)y=2c兩個(gè)圖象存在三個(gè)交點(diǎn),…

由(1)知f'(x)=3x2﹣x﹣2=(3x+2)(x﹣1),…,

令(3x+2)(x﹣1)=0,可得x=﹣,x=1;

x∈[﹣1,2],當(dāng)x∈(﹣1,﹣),x∈(1,2)時(shí),f'(x)>0,函數(shù)是增函數(shù),

x∈(﹣,1)時(shí),函數(shù)是減函數(shù),

函數(shù)的極大值為:f(﹣)=c+,f(2)=2+c>c+

極小值為:f(1)=﹣+c,f(﹣1)=

∴x∈[﹣1,2]時(shí),

可得,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,過(guò)右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線(xiàn)的斜率為,為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)斜率為的直線(xiàn)與橢圓相交于兩點(diǎn),記面積的最大值為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、是兩條不同直線(xiàn), 、是兩個(gè)不同平面,則下列四個(gè)命題:

① 若, , ,則

② 若, ,則;

③ 若 ,則;

④ 若, , ,則.

其中正確命題的個(gè)數(shù)為 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x+2)=f(x),且當(dāng)x[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( )

A.多于4個(gè) B.4個(gè)

C.3個(gè) D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的個(gè)數(shù)是( )

①命題“x0∈R,x+1>3x0的否定是“x∈R,x2+1≤3x”;

②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;

③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;

④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】候鳥(niǎo)每年都要隨季節(jié)的變化而進(jìn)行大規(guī)模地遷徙,研究某種鳥(niǎo)類(lèi)的專(zhuān)家發(fā)現(xiàn),該種鳥(niǎo)類(lèi)的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實(shí)數(shù)).據(jù)統(tǒng)計(jì),該種鳥(niǎo)類(lèi)在靜止的時(shí)候其耗氧量為30個(gè)單位,而其耗氧量為90個(gè)單位時(shí),其飛行速度為1 m/s.

(1)求出a,b的值;

(2)若這種鳥(niǎo)類(lèi)為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個(gè)單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1 ,正方形的邊長(zhǎng)為分別是的中點(diǎn),是正方形的對(duì)角線(xiàn)的交點(diǎn),是正方形兩對(duì)角線(xiàn)的交點(diǎn),現(xiàn)沿折起到的位置,使得,連結(jié)(如圖2).

(1)求證:;

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*.已知a1=1,a2,a3,且當(dāng)n≥2時(shí),4Sn+2+5Sn=8Sn+1+Sn-1.

(1)求a4的值;

(2)證明:為等比數(shù)列;

(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案