【題目】設(shè)是兩條不同直線, 、是兩個不同平面,則下列四個命題:

① 若 , ,則;

② 若 ,則

③ 若, ,則

④ 若, , ,則.

其中正確命題的個數(shù)為 ( )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】根據(jù)平面的法向量垂直的直線平行或在平面內(nèi),所以在正確; , 內(nèi)存在直線與平行,可得,故正確; 平行 在平面內(nèi),故正確;即兩個平面的法向量垂直,則這兩個平面垂直故正確,故選D.

【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年巴西奧運會的周邊商品有80%左右為中國制造,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品共98件中分別抽取9件和5件,測量產(chǎn)品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產(chǎn)品的測量數(shù)據(jù):

編號

1

2

3

4

5

169

178

166

175

180

75

80

77

70

81

(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量:

(2)當(dāng)產(chǎn)品中的微量元素滿足:,且時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量:

(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,若運行該程序,則輸出的的值為( )(參考數(shù)據(jù): , ,

A. 24 B. 30 C. 36 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ex﹣ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.

(1)求a,b的值;

(2)求f(x)在[0,1]上的最大值;

(3)證明:當(dāng)x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】13名醫(yī)生,其中女醫(yī)生6人,現(xiàn)從中抽調(diào)5名醫(yī)生組成醫(yī)療小組前往災(zāi)區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設(shè)不同的選派方法種數(shù)為N,則下列等式:

①C135﹣C71C64;②C72C63+C73C62+C74C61+C75;

③C135﹣C71C64﹣C65; ④C72C113;

其中能成為N的算式是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處都取得極值.

(1)求的值;(2)若對時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個數(shù)是( )

①命題“x0∈R,x+1>3x0的否定是“x∈R,x2+1≤3x”;

②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;

③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;

④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)處都取得極值.

1)求實數(shù)的值;

2)對任意,方程存在三個實數(shù)根,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,經(jīng)過原點的兩直線滿足,且交圓于不同兩點交 于不同兩點,記的斜率為

(1)求的取值范圍;

(2)若四邊形為梯形,求的值.

查看答案和解析>>

同步練習(xí)冊答案