設(shè)AB是圓x2+y2=1的一條直徑,以AB為直角邊、B為直角頂點(diǎn),逆時(shí)針方向作等腰Rt△ABC.當(dāng)AB變動(dòng)時(shí),求C點(diǎn)的軌跡.

答案:
解析:

解:設(shè)C(x,y)、B(x0,y0),當(dāng)x0、y0≠0時(shí),則(x-x0)2+(y-y0)2=4,,由x02+y02=1消去x0、y0得軌跡方程x2+y2=5.顯然當(dāng)x0=0或y0=0時(shí),方程也適合.故C點(diǎn)的軌跡為以原點(diǎn)為圓心,以為半徑的圓.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個(gè)動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),向量
OA
,
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|
,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明線段AB是圓C的直徑;
(2)當(dāng)圓C的圓心到直線x-2y=0的距離的最小值為
2
5
5
時(shí),求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點(diǎn)Q,求證:直線l過定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2=4,過點(diǎn)M(2,4)作圓的兩條切線,切點(diǎn)分別為A1、A2,直線A1A2恰好經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)垂直于x軸的一條弦,AB所在直線的方程為x=m(|m|<a且m≠0),P是橢圓上異于A、B的任意一點(diǎn),直線AP、BP分別交定直線l:x=
a2
m
于兩點(diǎn)Q、R,求證
OQ
OR
>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)AB是圓x2+y2=1的一條直徑,以AB為直角邊、B為直角頂點(diǎn),逆時(shí)針方向作等腰直角三角形ABC.當(dāng)AB變動(dòng)時(shí),求C點(diǎn)的軌跡.

查看答案和解析>>

同步練習(xí)冊答案