已知以為焦點的拋物線上的兩點滿足,則弦的中點到準(zhǔn)線的距離為(   )
A.B.C.D.
B
設(shè)兩點坐標(biāo)分別為。可知拋物線的焦點,準(zhǔn)線方程為。由可得,則。因為都在拋物線上,所以,則,即,所以,故,所以弦的中點到準(zhǔn)線的距離,故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在綜合實踐活動中,因制作一個工藝品的需要,某小組設(shè)計了如圖所示的一個門(該圖為軸對
稱圖形),其中矩形的三邊、由長6分米的材料彎折而成,邊的長
分米();曲線擬從以下兩種曲線中選擇一種:曲線一段余弦曲線
(在如圖所示的平面直角坐標(biāo)系中,其解析式為),此時記門的最高點
邊的距離為;曲線是一段拋物線,其焦點到準(zhǔn)線的距離為,此時記門的最高點
邊的距離為.
(1)試分別求出函數(shù)、的表達式;
(2)要使得點邊的距離最大,應(yīng)選用哪一種曲線?此時,最大值是多少?
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點F(0,),動圓P經(jīng)過點F且和直線y=相切,記動圓的圓心P的軌跡為曲線W.
⑴求曲線W的方程;⑵過點F作相互垂直的直線,,分別交曲線W于A,B和C,D.①求四邊形ABCD面積的最小值;②分別在A,B兩點作曲線W的切線,這兩條切線的交點記為Q,求證:QA⊥QB,且點Q在某一定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,過坐標(biāo)原點且斜率為的直線
橢圓相交于、,
(Ⅰ)求橢圓的方程;
(Ⅱ)若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明直線軸相交于定點;
(Ⅲ)在(Ⅱ)的條件下,過點的直線與橢圓交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知動點在曲線上移動,則點與點連線中點的軌跡方程是__________▲__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

線段是橢圓的一動弦,且直線與直線交于點,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點在曲線上,為曲線在點處的切線的傾斜角,則的取值范圍是(     )
A.[0,)B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線和點,過點P的直線與拋物線交與兩點,設(shè)點P剛好為弦的中點。
(1)求直線的方程
(2)若過線段上任一(不含端點)作傾斜角為的直線交拋物線于,類比圓中的相交弦定理,給出你的猜想,若成立,給出證明;若不成立,請說明理由。
(3)過P作斜率分別為的直線,交拋物線于交拋物線于,是否存在使得(2)中的猜想成立,若存在,給出滿足的條件。若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案