已知函數(shù),定義函數(shù) 給出下列命題:

; ②函數(shù)是奇函數(shù);③當(dāng)時(shí),若,,總有成立,其中所有正確命題的序號(hào)是( 。

A.②      B.①② C.③      D.②③

 

【答案】

D

【解析】

試題分析:①,所以,錯(cuò)誤;②當(dāng)x>0時(shí),-x<0,F(xiàn)(-x)=-f(-x)=-()=-f(x)=F(x),為奇函數(shù),同理可證當(dāng)x<0時(shí)也是奇函數(shù),正確;③因?yàn)閙n<0,不妨設(shè)m>0,n<0,又m+n>0,所以,|m|>|n|,-()=,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102523370573229773/SYS201310252337193231212747_DA.files/image007.png">,,所以,有<0,正確.

考點(diǎn):分段函數(shù),函數(shù)奇偶性.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期為5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù),又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5,
(1)求f(1)+f(4)的值;
(2)求y=f(x),x∈[1,4]上的解析式;
(3)求y=f(x)在[4,9]上的解析式,并求函數(shù)y=f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),其中a、b∈R且f(
1
2
)=
2
5

(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論;
(3)解關(guān)于t的不等式f(t-1)+f(t2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)一模)已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,又函數(shù)y=f(x)在區(qū)間[-1,1]上是奇函數(shù),又知y=f(x) 在區(qū)間[0,1]上的圖象是線段、在區(qū)間[1,4]上的圖象是一個(gè)二次函數(shù)圖象的一部分,且在x=2時(shí),函數(shù)取得最小值-5.求:
(1)f(1)+f(4)的值;
(2)y=f(x)在x∈[1,4]上的函數(shù)解析式;
(3)y=f(x)在x∈[4,9]上的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請(qǐng)求對(duì)應(yīng)的k的值;如果不是,請(qǐng)說(shuō)明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案