解:(1)如圖,根據(jù)偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng),可作出f(x)的圖象,(2分),
則f(x)的單調(diào)遞增區(qū)間為(-1,0),(1,+∞);(5分)
(2)令x>0,則-x<0,∴f(-x)=x
2-2x
∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(x)=f(-x)=x
2-2x
∴解析式為f(x)=
(10分)
(3)g(x)=x
2+2x-2ax+2,對(duì)稱(chēng)軸為x=a-1,
當(dāng)a-1≤1時(shí),g(1)=5-2a為最;
當(dāng)1<a-1≤2時(shí),g(a-1)=-a
2+2a+1為最;
當(dāng)a-1>2時(shí),g(2)=10-4a為最;
∴g(x)=
.(16分)
分析:(1)根據(jù)偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng),可作出f(x)的圖象,由圖象可得f(x)的單調(diào)遞增區(qū)間;
(2)令x>0,則-x<0,根據(jù)條件可得f(-x)=x
2-2x,利用函數(shù)f(x)是定義在R上的偶函數(shù),可得f(x)=f(-x)=x
2-2x,從而可得函數(shù)f(x)的解析式;
(3)先求出拋物線(xiàn)對(duì)稱(chēng)軸x=a-1,然后分當(dāng)a-1≤1時(shí),當(dāng)1<a-1≤2時(shí),當(dāng)a-1>2時(shí)三種情況,根據(jù)二次函數(shù)的增減性解答.
點(diǎn)評(píng):本題考查函數(shù)圖象的作法,考查函數(shù)解析式的確定與函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.