要得到函數(shù)y=
2
cosx的圖象,需將函數(shù)y=
2
sin(2x+
π
4
)的圖象上所有的點(diǎn)的變化正確的是( 。
A、橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再向左平行移動(dòng)
π
8
個(gè)單位長(zhǎng)度
B、橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再向右平行移動(dòng)
π
4
個(gè)單位長(zhǎng)度
C、橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)
π
4
個(gè)單位長(zhǎng)度
D、橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向右平行移動(dòng)
π
8
個(gè)單位長(zhǎng)度
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用誘導(dǎo)公式以及y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:將函數(shù)y=
2
sin(2x+
π
4
)的圖象上所有的點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),
可得函數(shù)y=
2
sin(x+
π
4
)=
2
cos[
π
2
-(x+
π
4
)]=
2
cos(x-
π
4
)的圖象;
再把所得圖象向左平行移動(dòng)
π
4
個(gè)單位長(zhǎng)度,可得函數(shù)y=
2
cosx的圖象,
故選:C.
點(diǎn)評(píng):本題主要考查誘導(dǎo)公式的應(yīng)用,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將4名新來的同學(xué)分配到A、B、C、D四個(gè)班級(jí)中,每個(gè)班級(jí)安排1名學(xué)生,其中甲同學(xué)不能分配到A班,那么不同的分配方案方法種數(shù)為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x+
1
x
)4
的展開式中常數(shù)項(xiàng)是( 。
A、1B、24C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

-1300°是第幾象限角(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,已知AB=3,BC=2
5
,CD=4,AD=
5
,BD=2,則異面直線AC與BD所成角的大小是( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量的集合A到A的映射f:
x
→f(
x
)=
x
-2(
x
a
a
a
為常向量)滿足f(
x
)•f(
y
)=
x
y
對(duì)任意
x
,
y
∈A恒成立,則
a
的坐標(biāo)不可能是( 。
A、(0,0)
B、(
2
2
,
2
2
C、(-
1
2
,
3
2
D、(
2
4
,
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x+2cosx在區(qū)間[-
3
,a]上的值域?yàn)閇-
1
4
,2],則a的范圍是( 。
A、[-
3
,
3
]
B、(-
3
,
3
]
C、[0,
3
]
D、(0,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=
2
0
x2dx,b=
2
0
exdx,c=
2
0
sinxdx,則a、b、c大小關(guān)系是( 。
A、c<a<b
B、a<c<b
C、a<b<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知回歸方程
y
=1.5x-2,則原始數(shù)據(jù)(2,2)的殘差
e
為( 。
A、-1B、1C、0D、0.5

查看答案和解析>>

同步練習(xí)冊(cè)答案