已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的定義域;
(2)求f(-1),f(12)的值;
(3)若f(4-a)-f(a-4)+數(shù)學(xué)公式數(shù)學(xué)公式=0,求a的值.

解:(1)由題設(shè),解得x≥-4且x≠1,
函數(shù)f(x)的定義域[-4,)∪(1,+∞)
(2)f(-1)==-3-,f(12)==-4;
(3)由f(4-a)-f(a-4)+=0
-+=0
-=0,即3-a=a-5,解得a=4.
分析:(1)由解析式知,x-1≠0,x+4≥0,解出其公共范圍即可得出函數(shù)的定義域;
(2)將自變量代入函數(shù)解析式直接運(yùn)算求解.
(3)將f(4-a)-f(a-4)+=0展開,根據(jù)表達(dá)式有意義求出a值.
點(diǎn)評(píng):本題考點(diǎn)是函數(shù)的定義域及求法,考查了求函數(shù)的定義域,已知自變量求函數(shù)值,要注意函數(shù)定義域的求法規(guī)則是使得解析式有意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
編寫一程序求函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最

2當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù),

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間數(shù)學(xué)公式上的函數(shù)值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間上的函數(shù)值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案