【題目】隨著人們社會(huì)責(zé)任感與公眾意識(shí)的不斷提高,越來(lái)越多的人成為了志愿者.某創(chuàng)業(yè)園區(qū)對(duì)其員工是否為志愿者的情況進(jìn)行了抽樣調(diào)查,在隨機(jī)抽取的10位員工中,有3人是志愿者.
(1)在這10人中隨機(jī)抽取4人填寫(xiě)調(diào)查問(wèn)卷,求這4人中恰好有1人是志愿者的概率P1;
(2)已知該創(chuàng)業(yè)園區(qū)有1萬(wàn)多名員工,從中隨機(jī)調(diào)查1人是志愿者的概率為 ,那么在該創(chuàng)業(yè)園區(qū)隨機(jī)調(diào)查4人,求其中恰有1人是志愿者的概率P2;
(3)該創(chuàng)業(yè)園區(qū)的A團(tuán)隊(duì)有100位員工,其中有30人是志愿者.若在A團(tuán)隊(duì)隨機(jī)調(diào)查4人,則其中恰好有1人是志愿者的概率為P3 . 試根據(jù)(Ⅰ)、(Ⅱ)中的P1和P2的值,寫(xiě)出P1 , P2 , P3的大小關(guān)系(只寫(xiě)結(jié)果,不用說(shuō)明理由).

【答案】
(1)

解: ,

所以這4人中恰好有1人是志愿者的概率為


(2)

解: ,

所以這4人中恰好有1人是志愿者的概率為 0.4116.


(3)

解:由于A團(tuán)隊(duì)中,每個(gè)人是志愿者的概率為 ,P3= =0.4116,

P1>P3=P2


【解析】由條件利用古典概率計(jì)算公式、以及n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率公式,求得所求事件的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分)已知橢圓的左焦點(diǎn)為,過(guò)的直線交于、兩點(diǎn).

)求橢圓的離心率.

)當(dāng)直線軸垂直時(shí),求線段的長(zhǎng).

)設(shè)線段的中點(diǎn)為為坐標(biāo)原點(diǎn),直線交橢圓交于兩點(diǎn),是否存在直線使得?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AC是弦,AD⊥CE,垂足為D,AC平分∠BAD.

(1)求證:直線CE是⊙O的切線;
(2)求證:AC2=ABAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】石嘴山三中最強(qiáng)大腦社對(duì)高中學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù)

x

6

8

10

12

y

2

3

5

6

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 ,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.

(2)若記憶力增加5個(gè)單位,預(yù)測(cè)判斷力增加多少個(gè)單位?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a<b<c,
(1)求B的大小;
(2)若a=2, ,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心在軸上的圓與直線切于點(diǎn).

(1)求圓的標(biāo)準(zhǔn)方程;

2已知,圓軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)).過(guò)點(diǎn)任作一條傾斜角不為0的直線與圓相交于兩點(diǎn)問(wèn):是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果執(zhí)行右邊的程序框圖,輸入正整數(shù)N(N≥2)和實(shí)數(shù)a1 , a2 , …,an , 輸出A,B,則(

A.A+B為a1 , a2 , …,an的和
B. 為a1 , a2 , …,an的算術(shù)平均數(shù)
C.A和B分別是a1 , a2 , …,an中最大的數(shù)和最小的數(shù)
D.A和B分別是a1 , a2 , …,an中最小的數(shù)和最大的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},則A∩B=(
A.(﹣∞,﹣1)
B.(﹣1,
C.﹙ ,3﹚
D.(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案