(1)求橢圓的方程;
(2)設(shè)P為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線AP、BP分別與橢圓相交于異于A、B的點(diǎn)M、N,證明點(diǎn)B在以MN為直徑的圓內(nèi).
解:(1)依題意得 a=2c,=4,解得a=2,c=1,從而b=.
故橢圓的方程為=1.
(2)解法1:由(1)得A(-2,0),B(2,0).設(shè)M(x0,y0).
∵M(jìn)點(diǎn)在橢圓上,∴y0=(4-x02).①又點(diǎn)M異于頂點(diǎn)A、B,∴-2<x0<2,
由P、A、M三點(diǎn)共線可以得P(4,).
從而=(x0-2,y0),=(2,).
∴·=2x0-4++2=(x02-4+3y02)②
將①代入②,化簡(jiǎn)得·=(2-x0).
∵2-x0>0,∴·>0,則∠MBP為銳角,從而∠MBN為鈍角,
故點(diǎn)B在以MN為直徑的圓內(nèi).
解法2:由(1)得A(-2,0),B(2,0).
設(shè)M(x1,y1),N(x2,y2),則-2<x1<2,-2<x2<2,又MN的中點(diǎn)Q的坐標(biāo)為().依題意,計(jì)算點(diǎn)B到圓心Q的距離與半徑的差
|BQ|2-|MN|2=(-2)2+()2-[(x1-x2)2+(y1-y2)2]=(x1-2)(x2-2)+y1y2 ③
又直線AP的方程為y=(x+2),直線BP的方程為y=(x-2).
而兩直線AP與BP的交點(diǎn)P在準(zhǔn)線x=4上,
∴,即y2=. ④
又點(diǎn)M在橢圓上,則=1,即y12=(4-x12). ⑤
于是將④⑤代入③,
化簡(jiǎn)后可得|BQ|2-|MN|2=(2-x1)(x2-2)<0.
從而,點(diǎn)B在以MN為直徑的圓內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
a2 |
c |
a2 |
c |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com