數(shù)列{an}的前n項和為Sn,數(shù)列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
(1)設(shè)cn=an-1,求證:數(shù)列{cn}是等比數(shù)列;
(2)求數(shù)列{bn}的通項公式.
【答案】
分析:(1)先根據(jù)a
n+S
n=n求出a
1的值,再由a
n+1+S
n+1=n+1和a
n+S
n=n兩式相減可得到2(a
n+1-1)=a
n-1,即
=
,再由c
n=a
n-1可得到數(shù)列{c
n}是等比數(shù)列,得證.
(2)先根據(jù)數(shù)列{c
n}是等比數(shù)列求出數(shù)列{c
n}的通項公式,進而可得到數(shù)列{a
n}的通項公式,然后由b
n=a
n-a
n-1可得到b
n的通項公式.
解答:(1)證明:∵a
1=S
1,a
n+S
n=n,∴a
1+S
1=1,得a
1=
.
又a
n+1+S
n+1=n+1,兩式相減得2(a
n+1-1)=a
n-1,即
=
,
也即
=
,故數(shù)列{c
n}是等比數(shù)列.
(2)解:∵c
1=a
1-1=-
,
∴c
n=-
,a
n=c
n+1=1-
,a
n-1=1-
.
故當n≥2時,b
n=a
n-a
n-1=
-
=
.
又b
1=a
1=
,即b
n=
(n∈N
*).
點評:本題主要考查等比數(shù)列的證明和求數(shù)列的通項公式,考查基礎(chǔ)知識的綜合運用.