【題目】經(jīng)國務院批復同意,鄭州成功入圍國家中心城市,某校學生團針對“鄭州的發(fā)展環(huán)境”對20名學生進行問卷調查打分(滿分100分),得到如圖1所示莖葉圖.

(1)分別計算男生女生打分的平均分,并用數(shù)學特征評價男女生打分的數(shù)據(jù)分布情況;

(2)如圖2按照打分區(qū)間繪制的直方圖中,求最高矩形的高;

(3)從打分在70分以下(不含70分)的同學中抽取3人,求有女生被抽中的概率.

【答案】(1)見解析(2)(3)

【解析】試題分析:1)利用莖葉圖能求出女生打分的平均分和男生打分的平均分,從莖葉圖來看,女生打分相對集中,男生打分相對分散.
2)20名學生中,打分區(qū)間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的學生數(shù)分別為:2人,4人,9人,4人,1人,打分區(qū)間[70,80)的人數(shù)最多,有9人,所點頻率為0.45,由此能求出最高矩形的高.
3)打分在70分以下(不含70分)的同學有6人,其中男生4人,女生2人,有女生被抽中的對立事件是抽中的3名同學都是男生,由此利用對立事件概率計算公式能求出有女生被抽中的概率.

試題解析:

解:(1)女生打分的平均分為:

,

男生打分的平均分為:

從莖葉圖來看,女生打分相對集中,男生打分相對分散.

(2)20名學生中,打分區(qū)間中的學生數(shù)分別為:2人,4人,9人,4人,1人,

打分區(qū)間的人數(shù)最多,有9人,所點頻率為: ,

∴最高矩形的高

(3)打分在70分以下(不含70分)的同學有6人,其中男生4人,女生2人,從中抽取3人,基本事件總數(shù),

有女生被抽中的對立事件是抽中的3名同學都是男生,

∴有女生被抽中的概率

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設多個分支機構,需要國內(nèi)公司外派大量后、后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機調查了位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計

合計

(Ⅰ)根據(jù)調查的數(shù)據(jù),是否有以上的把握認為“是否愿意被外派與年齡有關”,并說明理由;

(Ⅱ)該公司舉行參觀駐海外分支機構的交流體驗活動,擬安排名參與調查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為;后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為,求的概率

參考數(shù)據(jù):

(參考公式:,其中).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列命題中,正確的是( )

A. 垂直于同一個平面的兩個平面互相平行 B. 垂直于同一個平面的兩條直線互相平行

C. 平行于同一個平面的兩條直線互相平行 D. 平行于同一條直線的兩個平面互相平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前項和,且的等差中項,等差數(shù)列滿足,.

(1)求數(shù)列的通項公式;

(2)設,數(shù)列的前項和為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=loga(1﹣),其中0<a<1.
(Ⅰ)證明:f(x)是(a,+∞)上的減函數(shù);
(Ⅱ)若f(x)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結論不正確的是(  )

A.CD∥平面PAF
B.DF⊥平面PAF
C.CF∥平面PAB
D.CF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若上的最大值為,求實數(shù)的值;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍;

(3)在(1)的條件下,設,對任意給定的正實數(shù),曲線 上是否存在兩點、,使得是以為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)若曲線處的切線方程為.

(Ⅰ)求的值;

(Ⅱ)若對于任意,總有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案