已知方向向量為的直線過(guò)橢圓)的焦點(diǎn)以及點(diǎn),橢圓的中心關(guān)于直線的對(duì)稱點(diǎn)在橢圓的右準(zhǔn)線上。

(1)求橢圓的方程

(2)過(guò)點(diǎn)的直線交橢圓于點(diǎn),且滿足

為坐標(biāo)原點(diǎn)),求直線的方程

解:(1)已知直線方向向量為,所以,直線的斜率為,又直線過(guò)點(diǎn),所以直線的方程為:

設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,則直線的方程為:

解方程組:

  得

所以,點(diǎn)的坐標(biāo)為,又點(diǎn)在橢圓的右準(zhǔn)線上,

所以

又直線過(guò)橢圓的焦點(diǎn),可知橢圓的該焦點(diǎn)為

所以    

故,橢圓的方程為:                ……………… 6分

(2)當(dāng)直線的斜率存在時(shí),設(shè)直線直線的方程為:

聯(lián)立方程組  消得:

設(shè),則由韋達(dá)定理有:

                                                ……………… 10分

由條件得:

,且

所以

         ……………… 12分

       

       

點(diǎn)到直線的距離為

所以有,解得,

當(dāng)直線的斜率不存在時(shí),直線直線的方程為:

此時(shí),,

也有

故直線為所求          ……………… 14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年福建卷)(12分)

已知方向向量為的直線l過(guò)點(diǎn)(0,-2)和橢圓C:的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在過(guò)點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿足,

cot∠MON≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

22.

已知方向向量為的直線l過(guò)點(diǎn)()和橢圓的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在過(guò)點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿足=,cot∠MON≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方向向量為的直線過(guò)橢圓C:=1(a>b>0)的焦點(diǎn)以及點(diǎn)(0,),橢圓C的中心關(guān)于直線的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上。

⑴求橢圓C的方程。

⑵過(guò)點(diǎn)E(-2,0)的直線交橢圓C于點(diǎn)M、N,且滿足,(O為坐標(biāo)原點(diǎn)),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三上學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題

已知方向向量為的直線l過(guò)橢圓的焦點(diǎn)以及點(diǎn)(0,),直線l與橢圓C交于 A 、B兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長(zhǎng)為。

(1)求橢圓C的方程

(2)過(guò)左焦點(diǎn)且不與x軸垂直的直線m交橢圓于M、N兩點(diǎn),(O坐標(biāo)原點(diǎn)),求直線m的方程

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方向向量為的直線點(diǎn)和橢圓的焦點(diǎn),且橢圓C的中心關(guān)于直線的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上。

       (1)求橢圓C的方程

       (2)是否存在過(guò)點(diǎn)的直線交橢圓C于點(diǎn)M,N且滿足

       (O為原點(diǎn)),若存在求出直線的方程,若不存在說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案