已知數(shù)列{an}是首項為1的等差數(shù)列,且an+1>an(n∈N*),若a2,a4+2,3a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1anan+1
,求數(shù)列{bn}的前n項和Sn
分析:(Ⅰ)利用數(shù)列{an}是首項為1的等差數(shù)列,且an+1>an(n∈N*),a2,a4+2,3a5成等比數(shù)列,求出數(shù)列的公差,從而可得數(shù)列{an}的通項公式;
(Ⅱ)利用裂項法可求數(shù)列{bn}的前n項和Sn
解答:解:(Ⅰ)∵a2,a4+2,3a5成等比數(shù)列,∴(a4+2)2=3a2a5,
∵數(shù)列{an}是首項為1的等差數(shù)列,∴an=1+(n-1)d,
∴3(d+1)2=(1+d)(1+4d)
∴d=2或d=-1,
又an+1>an(n∈N*),∴d>0,∴d=2
∴an=2n-1
(Ⅱ)bn=
1
anan+1
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Sn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)
]=
1
2
(1-
1
2n+1
)
=
n
2n+1
點(diǎn)評:本題考查數(shù)列的通項與求和,正確運(yùn)用數(shù)列的求和方法是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項為3,公差為2的等差數(shù)列,其前n項和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項a1=
1
4
的等比數(shù)列,其前n項和Sn中S3,S4,S2成等差數(shù)列,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求證:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項為1的等差數(shù)列,且公差不為零,而等比數(shù)列{bn}的前三項分別是a1,a2,a6
(I)求數(shù)列{an}的通項公式an;
(II)若b1+b2+…bk=85,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項為1,公差為2的等差數(shù)列,又?jǐn)?shù)列{bn}的前n項和Sn=nan
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若cn=
1bn(2an+3)
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項a1=a,公差為2的等差數(shù)列,數(shù)列{bn}滿足2bn=(n+1)an
(1)若a1、a3、a4成等比數(shù)列,求數(shù)列{an}的通項公式;
(2)若對任意n∈N*都有bn≥b5成立,求實數(shù)a的取值范圍;
(3)數(shù)列{cn}滿足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,當(dāng)a=-20時,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案