【題目】某籃球隊有名隊員,其中有名隊員打前鋒,有名隊員打后衛(wèi),甲、乙兩名隊員既能打前鋒又能打后衛(wèi).若出場陣容為名前鋒,名后衛(wèi),則不同的出場陣容共有______種.
【答案】
【解析】
分三種情況討論:①甲、乙都不出場;②甲、乙只有一人出場;③甲、乙都出場.分別計算出每種情況下出場的陣容種數(shù),利用分類加法計數(shù)原理即可得出結(jié)果.
分以下三種情況討論:
①甲、乙都不出場,則應(yīng)從名打前鋒的隊員中挑選人,從名打后衛(wèi)的隊員中挑選人,此時,出場陣容種數(shù)為;
②甲、乙只有一人出場,若出場的這名隊員打前鋒,則應(yīng)從名打前鋒的隊員中挑選人,從名打后衛(wèi)的隊員中挑選人;若出場的這名隊員打后衛(wèi),則應(yīng)從名打前鋒的隊員中挑選人,從名打后衛(wèi)的隊員中挑選人.
此時,出場陣容種數(shù)為;
③甲、乙都出場,若這兩名隊員都打前鋒,則應(yīng)從名打前鋒的隊員中挑選人,從名打后衛(wèi)的隊員中挑選人;若這兩名隊員都打后衛(wèi),則應(yīng)從名打前鋒的隊員中挑選人,從名打后衛(wèi)的隊員中不用挑選;若這兩名隊員一人打前鋒、一人打后衛(wèi),則應(yīng)從名打前鋒的隊員中挑選人,從名打后衛(wèi)的隊員中挑選人,此時,出場陣容種數(shù)為.
綜上所述,由分類加法計數(shù)原理可知,共有種不同的出場陣容.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ,四點(diǎn),,,中恰有三點(diǎn)在橢圓上.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過的右焦點(diǎn)作斜率為的直線與交于,兩點(diǎn),直線與軸交于點(diǎn),為線段的中點(diǎn),過點(diǎn)作直線于點(diǎn).證明:,,三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為、,過的直線與橢圓相交于、兩點(diǎn).
(1)求 的周長;
(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),點(diǎn)在第一象限,點(diǎn)在線段上.若,求點(diǎn)的橫坐標(biāo);
(3)設(shè)直線不平行于坐標(biāo)軸,點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),直線與軸交于點(diǎn).求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線M:的焦點(diǎn)為F,過焦點(diǎn)F的直線l(與x軸不垂直)交拋物線M于點(diǎn)A,B,A關(guān)于x軸的對稱點(diǎn)為.
(1)求證:直線過定點(diǎn),并求出這個定點(diǎn);
(2)若的垂直平分線交拋物線于C,D,四邊形外接圓圓心N的橫坐標(biāo)為19,求直線AB和圓N的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x2+1)﹣e﹣|x|(e為自然對數(shù)的底數(shù)),則不等式f(2x+1)>f(x)的解集是( 。
A. (﹣1,1)B. (﹣∞,﹣1)∪(1,+∞)
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某高校設(shè)計了一個實驗學(xué)科的實驗考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實驗操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。
(Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計算數(shù)學(xué)期望;
(Ⅱ)試從兩位考生正確完成題數(shù)的數(shù)學(xué)期望及至少正確完成2題的概率分析比較兩位考生的實驗操作能力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,經(jīng)過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線/的極坐標(biāo)方程為.
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)過點(diǎn)作l的垂線l0交C于A,B兩點(diǎn),點(diǎn)A在x軸上方,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年福建省高考實行“”模式.“”模式是指:“3”為全國統(tǒng)考科目語文、數(shù)學(xué)、外語,所有學(xué)生必考;“1”為首選科目,考生須在高中學(xué)業(yè)水平考試的物理、歷史科目中選擇1科;“2”為再選科目,考生可在化學(xué)、生物、政治、地理4個科目中選擇2科,共計6個考試科目.
(1)若學(xué)生甲在“1”中選物理,在“2”中任選2科,求學(xué)生甲選化學(xué)和生物的概率;
(2)若學(xué)生乙在“1”中任選1科,在“2”中任選2科,求學(xué)生乙不選政治但選生物的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,若點(diǎn)是曲線截直線所得線段的中點(diǎn),求的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com