【題目】下列各組函數(shù)f(x)與g(x)的圖象相同的是(
A.f(x)=x,g(x)=( 2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=

【答案】D
【解析】解:對于A,f(x)=x(x∈R),與g(x)=( 2=x(x≥0)的定義域不同,

∴不是同一函數(shù),圖象不同;

對于B,f(x)=x2(x∈R),與g(x)=(x+1)2(x∈R)的對應(yīng)關(guān)系不同,

∴不是同一函數(shù),圖象不同;

對于C,f(x)=1(x∈R),與g(x)=x0=1(x≠0)的定義域不同,

∴不是同一函數(shù),圖象不同;

對于D,f(x)=|x|= ,與g(x)= 的定義域相同,

對應(yīng)關(guān)系也相同,∴是同一函數(shù),圖象相同.

故選:D.

兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,這樣的函數(shù)是同一函數(shù),它們的圖象相同.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)對于定義域內(nèi)的任意x都滿足 ,則稱f(x)具有性質(zhì)M.
(1)很明顯,函數(shù) (x∈(0,+∞)具有性質(zhì)M;請證明 (x∈(0,+∞)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù).
(2)已知函數(shù)g(x)=|lnx|,點(diǎn)A(1,0),直線y=t(t>0)與g(x)的圖象相交于B、C兩點(diǎn)(B在左邊),驗(yàn)證函數(shù)g(x)具有性質(zhì)M并證明|AB|<|AC|.
(3)已知函數(shù) ,是否存在正數(shù)m,n,k,當(dāng)h(x)的定義域?yàn)閇m,n]時,其值域?yàn)閇km,kn],若存在,求k的范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(x+ )圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向右平移 個單位,那么所得圖象的一條對稱軸方程為(
A.x=﹣
B.x=﹣
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線y=x+b與曲線 有公共點(diǎn),則b的取值范圍是(
A.[ , ]
B.[ ,3]
C.[﹣1, ]
D.[ ,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩機(jī)床同時加工直徑為100mm的零件,為檢驗(yàn)質(zhì)量,隨機(jī)從中各抽取5件,測量結(jié)果如圖,請說明哪個機(jī)床加工的零件較好?

99

100

98

100

103

99

100

102

99

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S﹣ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2 ,M為AB的中點(diǎn).

(1)求證:AC⊥SB;
(2)求二面角S﹣CM﹣A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣x,g(x)=xlnx.
(1)求函數(shù)f(x)的最大值;
(2)設(shè)0<a<b,證明0<g(a)+g(b)﹣2g( )<(b﹣a)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的奇函數(shù)f(x)= ,其中h(x)是指數(shù)函數(shù),且h(2)=4.
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xex﹣ax2﹣x,a∈R.
(1)當(dāng)a= 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對x≥1時,恒有f(x)≥xex+ax2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案