10.在等差數(shù)列{an}中,a2=3,a14=25,則a7+a9=(  )
A.22B.75C.28D.18

分析 利用等差數(shù)列的通項(xiàng)公式直接求解.

解答 解:在等差數(shù)列{an}中,
∵a2=3,a14=25,
∴a7+a9=a2+a14=3+25=28.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列中兩項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}是公比為q(q≠1)的等比數(shù)列,且a1,a3,a2成等差數(shù)列,則公比q的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)在(0,$\frac{4π}{3}$]上單調(diào)遞增,在($\frac{4π}{3}$,2π]上單調(diào)遞減,當(dāng)x∈[π,2π]時(shí),不等式m-3≤f(x)≤m+3恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.[$\frac{1}{2}$,1]B.(-∞,-2)C.[-$\frac{5}{2}$,4]D.[-2,$\frac{7}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知拋物線C1:y=ax2(a>0)的焦點(diǎn)F也是橢圓C2:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{^{2}}$=1(b>0)的一個(gè)焦點(diǎn),點(diǎn)M,P($\frac{3}{2}$,1)分別為曲線C1,C2上的點(diǎn),則|MP|+|MF|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=$\left\{\begin{array}{l}{-x-4,(x<0)}\\{{x}^{2}-4,(x>0)}\end{array}\right.$的零點(diǎn)為( 。
A.-4或-2B.-4或2C.-2或4D.-2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,A,B,C是直線l上的三點(diǎn),AB=4,BC=4,過(guò)A作動(dòng)圓與直線l相切,過(guò)B,C分別做圓的異于l的兩切線,交于點(diǎn)P,則P的軌跡為橢圓.(填軌跡類型,不求方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2,a4+2,a5成等差數(shù)列,a1=2,Sn是數(shù)列{an}的前n項(xiàng)的和,則S10-S4=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若動(dòng)點(diǎn)A(x1,y1)、B(x2,y2)分別在直線l1:2x-y+11=0和l2:2x-y-1=0上移動(dòng),則AB的中點(diǎn)M所在的直線方程為( 。
A.2x+y-5=0B.2x+y+5=0C.2x-y-5=0D.2x-y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.“m=-1”是“直線l1:mx-2y-1=0和直線l2:x-(m-1)y+2=0相互平行”的充分不必要條件.(用“充分不必要”,“必要不充分條件”,“充要”,“既不充分也不必要”填空)

查看答案和解析>>

同步練習(xí)冊(cè)答案