已知定義域?yàn)镽的數(shù)f(x)=-
1
2
+
b
2x+1
是奇函數(shù)
(1)求b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-t)+f(t2-k)<0恒成立,求k的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)的奇偶性即可求b的值;
(2)將不等式進(jìn)行轉(zhuǎn)化,利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系即可求出k的取值范圍.
解答: 解:(1)∵f(x)是奇函數(shù),
∴f(0)=-
1
2
+
b
2
=0
,解得b=1.
(2)當(dāng)b=1時(shí),f(x)=-
1
2
+
1
2x+1
則(-∞,+∞)上為減函數(shù),
∵f(x)為奇函數(shù),
∴不等式f(t2-t)+f(t2-k)<0等價(jià)為f(t2-t)<-f(t2-k)=f(k-t2),
∵f(x)是減函數(shù),
∴不等式等價(jià)為t2-t>k-t2
即2t2-t-k>0,
則判別式△=1+8k<0,
解得k<-
1
8
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的應(yīng)用以及不等式恒成立問題,根據(jù)奇函數(shù)的性質(zhì),利用函數(shù)單調(diào)性和奇偶性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一組數(shù)據(jù)如圖所示,則這組數(shù)據(jù)的中位數(shù)是(  )
A、27.5B、28.5
C、27D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=3,b=2
6
,∠B=2∠A,求邊長c的值以及三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“數(shù)列{an}(n∈N*)滿足an+1=an•q(其中q為常數(shù))”是“數(shù)列{an}(n∈N*)是等比數(shù)列”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)年級(jí)有20個(gè)班,每班都是50人,每個(gè)班的學(xué)生的學(xué)號(hào)都是1~50.學(xué)校為了了解這個(gè)年級(jí)的作業(yè)量,把每個(gè)班中學(xué)號(hào)為5,15,25,35,45的學(xué)生的作業(yè)留下,這里運(yùn)用的是( 。
A、系統(tǒng)抽樣
B、分層抽樣
C、簡單隨機(jī)抽樣
D、隨機(jī)數(shù)表法抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長分別為a、b、c,其中a=4,b=3,∠C=60°,則△ABC的面積為( 。
A、3
B、3
3
C、6
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,點(diǎn)A(1,1),點(diǎn)B(4,2),點(diǎn)C(-4,6).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,周期為π,且在[0,
π
2
]上為減函數(shù)的是(  )
A、y=sin(2x+
π
2
B、y=cos(2x+
π
2
C、y=sin(x+
π
2
D、y=cos(x+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,且當(dāng)x=
1
2
時(shí),函數(shù)f(x)=
1
2
an•x2+(2-n-an+1)•x取得極值.
(1)若bn=2n-1•an,求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)試證明:n>3(n∈N*)時(shí),Sn
4n
n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案