已知函數(shù)f(x)對任意的x,y∈R,都有f(x)+f(y)=f(x+y).
(1)求f(0)的值;
(2)判斷f(x)的奇偶性;
(3)若f(1)=1,且f(x)在[0,+∞)上是增函數(shù),求滿足不等式f(2x-x)+f(x)>4的x的取值范圍.
解:(1)取y=0,得f(x)+f(0)=f(x+0)=f(x),
∴f(0)=0;
(2)取y=-x,得f(x)+f(-x)=f(0)=0,
∴對任意x∈R,都有f(-x)=-f(x)
由此可得,f(x)是定義在R 上的奇函數(shù);
(3)∵f(1)=1,可得f(2)=f(1)+f(1)=2
∴f(4)=f(2)+f(2)=2+2=4
不等式f(2x-x)+f(x)>4,可化成f(2x-x+x)>f(4),即f(2x)>f(4),
∵f(x)在[0,+∞)上是增函數(shù),
∴2x>4,解之得x>2,
即滿足不等式f(2x-x)+f(x)>4的x的取值范圍為(2,+∞).
分析:(1)對已知條件令y=0,結(jié)合等式的性質(zhì)變形整理即可得到f(0)的值;
(2)令y=-x,代入已知條件并結(jié)合f(0)=0化簡整理,即可得到f(-x)=-f(x),得f(x)是定義在R 上的奇函數(shù);
(3)根據(jù)f(1)=1進(jìn)行賦值,可算出f(4)=4.再根據(jù)條件將不等式f(2x-x)+f(x)>4整理為f(2x)>f(4),最后由函數(shù)的單調(diào)性解關(guān)于x的不等式,即可得到滿足不等式的實數(shù)x的取值范圍.
點評:本題給出抽象函數(shù),探討函數(shù)的奇偶性與單調(diào)性,并求關(guān)于x的不等式的解集.著重考查了函數(shù)奇偶性與單調(diào)性的綜合、賦值法求抽象函數(shù)的值等知識,屬于基礎(chǔ)題.