19.在區(qū)間[-5,4]上隨機(jī)取一個(gè)數(shù)x,使不等式$\frac{3}{x+2}$>1成立的概率為( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

分析 由題意,本題符合幾何概型,只要求出區(qū)間的長(zhǎng)度以及使不等式成立的x的范圍區(qū)間長(zhǎng)度,利用幾何概型公式即可求得結(jié)果.

解答 解:不等式$\frac{3}{x+2}$>1可化為$\frac{3}{x+2}$-1>0,
即$\frac{x-1}{x+2}$<0,
解得-2<x<1;
又區(qū)間[-5,4]的長(zhǎng)度為9,
使得$\frac{3}{x+2}$>1成立的x的范圍是(-2,1),區(qū)間長(zhǎng)度為3,
由幾何概型公式可得
使得$\frac{3}{x+2}$>1成立的概率為P=$\frac{3}{9}$=$\frac{1}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查了幾何概型公式的應(yīng)用問(wèn)題,關(guān)鍵是明確所求是區(qū)間長(zhǎng)度的比,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)=|log2x|,若0<a<1<b且f(b)=f(a)+1,則a+2b的取值范圍為(  )
A.[4,+∞)B.(4,+∞)C.[5,+∞)D.(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.不等式x2<-2x+15的解集為( 。
A.{x|-5<x<3}B.{x|x<-5}C.{x|x<-5或x>3}D.{x|x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知點(diǎn)P,A,B,C在同一球面上,PA⊥平面ABC,AP=2AB=2,AB=BC,且$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,則該球的表面積是6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法中正確的是(  )
A.若命題P:?x0∈R,x02-x0+1<0,則¬P:?x∉R,x2-x+1≥0
B.命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]”的逆否命題為真命題
C.已知相關(guān)變量(x,y)滿足回歸方程$\widehat{y}$=2-3x,若變量x增加一個(gè)單位,則y平均增加3個(gè)單位
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知復(fù)數(shù)(1-i)z=2+3i(i為虛數(shù)單位),則z的虛部為(  )
A.$\frac{5}{2}$B.$\frac{5}{2}$iC.-$\frac{5}{2}$iD.-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(1-x),x<1}\\{\frac{2}{x-1},x>1}\end{array}\right.$,g(x)=$\frac{k}{{x}^{2}}$(k>0),對(duì)任意p∈(1,+∞),總存在實(shí)數(shù)m,n滿足m<0<n<p,使得f(p)=f(m)=g(n),則整數(shù)k的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列能保證a⊥∂(a,b,c為直線,∂為平面)的條件是( 。
A.b,c?∂.a(chǎn)⊥b,a⊥cB.b,c?∂.a(chǎn)∥b,a∥c
C.b,c?∂.b∩c=A,a⊥b,a⊥cD.b,c?∂.b∥c,a⊥b,a⊥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0,$\frac{π}{2}$<φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為$\sqrt{17}$,則f(-1)=( 。
A.-2B.2C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案