已知橢圓C的方程為,雙曲線的兩條漸近線為l1,l2,過(guò)橢圓C的右焦點(diǎn)F作直線l,使l⊥l1,又l與l2交于P,設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).
(1)當(dāng)l1與l2的夾角為60°,且△POF的面積為時(shí),求橢圓C的方程;
(2)當(dāng)時(shí),求的最大值.
解:(1)l1的斜率為,l2的斜率為,由l1與l2的夾角為60°,得.
整理,得.①
由得.由,得.
∴.②
由①②,解得,b=1.∴橢圓C方程為:.
(2)由,F(xiàn)(c,0)及,得.
將A點(diǎn)坐標(biāo)代入橢圓方程,得.
整理,得,
∴的最大值為,此時(shí).
分析:(1)求橢圓方程即求a、b.根據(jù)題中的兩個(gè)數(shù)量關(guān)系:l1與l2的夾角為60°,△POF的面積為,列出關(guān)于a、b的兩個(gè)方程即可.
(2)由P、F的坐標(biāo)求出A點(diǎn)的坐標(biāo),代入橢圓方程可得與a、b、c的關(guān)系,進(jìn)而得出與離心率e的關(guān)系.
說(shuō)明:本題考查綜合運(yùn)用解析幾何知識(shí)解決問(wèn)題的能力,重點(diǎn)考查在圓錐曲線中解決問(wèn)題的基本方法,轉(zhuǎn)化能力,以及字母運(yùn)算的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
a2+b2 |
| ||
3 |
13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
2 |
| ||
2 |
OP |
OM |
ON |
1 |
2 |
y | 2 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
y2 |
a2 |
x2 |
b2 |
| ||
2 |
a2 |
c |
| ||
2 |
AP |
PB |
OA |
OB |
OP |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x 2 |
4 |
y2 |
3 |
m |
OA |
OB |
m |
OF |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com