4.方程x2+3ax+3a+1=0(a>2)的兩根為tanα,tanβ,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),則α+β=( 。
A.$\frac{π}{4}$B.-$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{π}{4}$或-$\frac{3π}{4}$

分析 由條件利用韋達(dá)定理、兩角和的正切公式,求得tan(α+β)的值,可得α+β的值.

解答 解:∵方程x2+3ax+3a+1=0(a>2)的兩根為tanα,tanβ,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴tanα+tanβ=-3a,tanα•tanβ=3a+1,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=1,
∴α+β=$\frac{π}{4}$,
故選:A.

點(diǎn)評(píng) 本題主要考查韋達(dá)定理、兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)為$\overline{x}$=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1,…,3xn+1的平均數(shù)和方差分別為( 。
A.5,2B.16,2C.16,18D.16,9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某三棱錐的三視圖如圖所示,則該三棱錐的體積是( 。
A.36B.18C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在數(shù)列{an}中,a1=1,an+1=2an,Sn為{an}的前n項(xiàng)和,則S5=( 。
A.-30B.31C.-32D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某全日制大學(xué)共有學(xué)生5600人,包括專(zhuān)科生、本科生和研究生,其中專(zhuān)科生有1300人,本科生有3000人,現(xiàn)采用分層抽樣的方法調(diào)查學(xué)生利用因特網(wǎng)查找學(xué)習(xí)資料的情況,抽取的樣本為280人,則應(yīng)在專(zhuān)科生,本科生與研究生這三類(lèi)學(xué)生中分別抽取人數(shù)為65人,150人,65人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若A=60°,B=45°,$a=3\sqrt{2}$,則b=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=x-$\frac{a}{x}$+a在[1,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是[-1,+∞)(或者a≥-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)p:y=cx是R上的單調(diào)遞減函數(shù);q:函數(shù)g(x)=lg(2cx2+2x+1)的值域?yàn)镽.如果“p且q”為假命題,“p或q”為真命題,則正實(shí)數(shù)c的取值范圍是( 。
A.$({\frac{1}{2},1})$B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}}]∪[{1,+∞})$D.$({0,\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若關(guān)于x的方程x3-3x-m=0在[0,2]上有根,則實(shí)數(shù)m的取值范圍是( 。
A.[-2,2]B.[0,2]C.[-2,0]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案