10.用反證法證明命題“若a2+b2=0,則a,b全為0”,其反設(shè)為a,b不全為0.

分析 用反證法證明命題時,其反設(shè)是結(jié)論不成立,即否定結(jié)論.

解答 解:命題“若a2+b2=0,則a,b全為0”,
其題設(shè)為“a2+b2=0”,
結(jié)論是“a,b全為0”,
用反證法證明該命題時,其反設(shè)為“a,b不全為0”.
故答案為:“a,b不全為0”.

點(diǎn)評 本題考查了反證法證明命題的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求函數(shù)$f(x)={\frac{x}{3}^3}+{x^2}-3x-4在區(qū)間[{\left.{0,2}]}$上的單調(diào)區(qū)間,并求出該函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知線段PQ的端點(diǎn)Q的坐標(biāo)是(4,0),端點(diǎn)P在圓(x+2)2+y2=4上運(yùn)動,點(diǎn)M是線段PQ的中點(diǎn),
(1)求點(diǎn)M的軌跡方程,并說明它是什么圖形;
(2)設(shè)A(0,t),B(0,t+6)(-5≤t≤-2),若點(diǎn)M的軌跡與△ABC的相切,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(1,$\sqrt{2}$),$\overrightarrow$=($\frac{1}{2}$,sinθ),若$\overrightarrow{a}$∥$\overrightarrow$,則銳角θ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過點(diǎn)(2,1)且斜率為-2的直線方程為2x+y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾(注:從第2天開始,每天比前一天多織相同量的布),第一天織5尺布,從第2天起每天比前一天多織$\frac{16}{29}$尺布,則一月(按30天計(jì))共織( 。┏卟迹
A.250B.300C.360D.390

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示的程序框圖,輸出的結(jié)果是S=2017,則輸入A的值為( 。
A.2018B.2016C.1009D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在平面直角坐標(biāo)系xOy中,角α是以O(shè)x軸為始邊,OA為終邊的角,把OA繞點(diǎn)O逆時針旋轉(zhuǎn)β(0<β<π)角到OB位置,已知A、B是單位圓上分別位于第一、二象限內(nèi)的點(diǎn),它們的橫坐標(biāo)分別為$\frac{3}{5}$、-$\frac{{\sqrt{2}}}{2}$.
(1)求$\frac{1+sin2α}{cos2α}$的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)Z1=2+i,Z2=1+i,則$\frac{z_1}{z_2}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第三象限C.第二象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案