設P是雙曲線
與圓
在第一象限的交點,
分別是雙曲線的左右焦點,且
則雙曲線的離心率為( 。
試題分析:P點在雙曲線右支上,
又
點在圓
上
即
點評:求離心率需找a,c的齊次方程
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知直線l:y=2x-4交拋物線y
2=4x于A,B兩點,試在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求出這個最大面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
一動點到y(tǒng)軸的距離比到點(2,0)的距離小2,則此動點的軌跡方程為___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,點
在橢圓上。
(1)求橢圓的離心率;
(2)若橢圓的短半軸長為
,直線
與橢圓交于A、B,且線段AB以M(1,1)為中點,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知F
1,F(xiàn)
2是橢圓
的兩個焦點,過F
2的直線交橢圓于點A、B,若
,
則
( )
A. 10
B. 11
C. 9
D.16
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)點
為橢圓
內的一定點,過P點引一直線,與橢圓相交于
兩點,且P恰好為弦AB的中點,如圖所示,求弦AB所在的直線方程及弦AB的長度。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題12分)設
,在平面直角坐標系中,已知向量
,向量
,
,動點
的軌跡為E. 求軌跡E的方程,并說明該方程所表示曲線的形狀.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知拋物線
的頂點為坐標原點,焦點在
軸上. 且經(jīng)過點
,
(1)求拋物線
的方程;
(2)若動直線
過點
,交拋物線
于
兩點,是否存在垂直于
軸的直線
被以
為直徑的圓截得的弦長為定值?若存在,求出
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
的左,右焦點分別為
,過
的直線L與橢圓C相交 A,B于兩點,且直線L的傾斜角為
,點
到直線L的距離為
,
(1) 求橢圓C的焦距.(2)如果
求橢圓C的方程.(12分)
查看答案和解析>>