直線l過點P(0,2),且被圓x2+y2=4截得弦長為2,則直線l的斜率為( 。
分析:根據(jù)題意得到直線l斜率存在,設(shè)為k,表示出直線l方程,利用點到直線的距離公式表示出圓心到直線l的距離d,根據(jù)r與弦長,利用垂徑定理及勾股定理列出關(guān)于k的方程,求出方程的解得到k的值即可.
解答:解:由題意設(shè)直線l方程為y-2=kx,即kx-y+2=0,
∵圓心(0,0)到直線l的距離d=
2
k2+1
,r=2,弦長為2,
∴2=2
r2-d2
,即4-
4
k2+1
=1,
解得:k=±
3
3

故選D
點評:此題考查了直線與圓相交的性質(zhì),涉及的知識有:點到直線的距離公式,圓的標(biāo)準(zhǔn)方程,垂徑定理,以及勾股定理,熟練掌握公式及定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點P(0,-2),按下列條件求直線l的方程
(1)直線l與兩坐標(biāo)軸圍成三角形面積為4;
(2)直線l與線段AB有公共點(包括線段兩端點),且A(1,2)、B(-4,1),求直線l斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標(biāo)原點O,焦點在x軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,兩準(zhǔn)線間的距離為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l過點P(0,2)且與橢圓相交于A、B兩點,當(dāng)△AOB面積取得最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(0,2),斜率為k,圓Q:x2+y2-12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A、B兩個不同的點,問是否存在常數(shù)k,使得
OA
+
OB
PQ
共線?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(0,2),斜率為k,圓Q:x2+y2-12x+32=0,若直線l和圓Q交于兩個不同的點A,B,問是否存在常數(shù)k,使得
OA
+
OB
PQ
共線?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案