16.已知點(diǎn)A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),則向量$\overrightarrow{AB}$與$\overrightarrow{CD}$的夾角的余弦值為-$\frac{2}{3}$.

分析 先求出向量$\overrightarrow{AB}$,$\overrightarrow{CD}$,利用cos<$\overrightarrow{AB},\overrightarrow{CD}$>=$\frac{\overrightarrow{AB}•\overrightarrow{CD}}{|\overrightarrow{AB}|•|\overrightarrow{CD}|}$,能求出向量$\overrightarrow{AB}$與$\overrightarrow{CD}$的夾角的余弦值.

解答 解:∵點(diǎn)A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),
∴$\overrightarrow{AB}$=(1,0,0),$\overrightarrow{CD}$=(-2,-2,1),
∴cos<$\overrightarrow{AB},\overrightarrow{CD}$>=$\frac{\overrightarrow{AB}•\overrightarrow{CD}}{|\overrightarrow{AB}|•|\overrightarrow{CD}|}$=$\frac{-2}{1×\sqrt{9}}$=-$\frac{2}{3}$.
∴向量$\overrightarrow{AB}$與$\overrightarrow{CD}$的夾角的余弦值為-$\frac{2}{3}$.

點(diǎn)評 本題考查向量夾角的余弦值的求法,考查空間向量坐標(biāo)運(yùn)算法則、空間向量夾角余弦值計(jì)算公式等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,過橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$右焦點(diǎn)F的直線x+y-2=0交C于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為$\frac{1}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)F的直線l(不與坐標(biāo)軸垂直)與橢圓交于D,E兩點(diǎn),若在線段OF上存在點(diǎn)M(t,0),使得∠MDE=∠MED,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等差數(shù)列{an}中,a10=13,S9=27,則公差d=2,a100=193.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)定義域?yàn)镽,命題p:?x1,x2∈R,(f(x1)-f(x2))(x1-x2)<0,則¬p是( 。
A.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)>0B.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)≥0
C.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)≥0D.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示,在正方體ABCD-A1B1C1D1中,已知棱長為a,M,N分別是BD和AD的中點(diǎn),則B1M與D1N所成角的余弦值為( 。
A.$\frac{\sqrt{30}}{10}$B.$\frac{\sqrt{30}}{10}$aC.-$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{15}}{15}$a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.正數(shù)a、m、b構(gòu)成公差為-$\frac{1}{2}$的等差數(shù)列,a,b的等比中項(xiàng)是2$\sqrt{5}$,則雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率為(  )
A.$\frac{5}{3}$B.$\frac{\sqrt{41}}{4}$C.$\frac{5}{4}$D.$\frac{\sqrt{41}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)P(x,y)是曲線C上任意一點(diǎn),點(diǎn)(x,2y)在圓x2+y2=8上,定點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l與曲線C交于A、B兩個(gè)不同點(diǎn).
(1)求曲線C的方程;
(2)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c.且滿足ccos(2016π-A)-$\sqrt{3}$ccos($\frac{3π}{2}$-A)=a+b.
(1)求C的大。
(2)若a=3,b=4.試求$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A,B,C在圓x2+y2=4上運(yùn)動,且AB⊥BC.若點(diǎn)P的坐標(biāo)為(3,4),則$|{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}}|$的取值范圍為( 。
A.[10,15]B.[12,17]C.[13,17]D.[15,17]

查看答案和解析>>

同步練習(xí)冊答案